Zengwei Feng, Qiuhong Liang, Qing Yao, Yang Bai, Honghui Zhu
{"title":"根系渗出物招募的根系生物群在植物抗病中的作用:现状与未来方向。","authors":"Zengwei Feng, Qiuhong Liang, Qing Yao, Yang Bai, Honghui Zhu","doi":"10.1186/s40793-024-00638-6","DOIUrl":null,"url":null,"abstract":"<p><p>Root exudates serve as a bridge connecting plant roots and rhizosphere microbes, playing a key role in influencing the assembly and function of the rhizobiome. Recent studies have fully elucidated the role of root exudates in recruiting rhizosphere microbes to enhance plant performance, particularly in terms of plant resistance to soil-borne pathogens; however, it should be noted that the composition and amount of root exudates are primarily quantitative traits regulated by a large number of genes in plants. As a result, there are knowledge gaps in understanding the contribution of the rhizobiome to soil-borne plant disease resistance and the ternary link of plant genes, root exudates, and disease resistance-associated microbes. Advancements in technologies such as quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) offer opportunities for the identification of genes associated with quantitative traits. In the present review, we summarize recent studies on the interactions of plant and rhizosphere microbes through root exudates to enhance soil-borne plant disease resistance and also highlight methods for quantifying the contribution of the rhizobiome to plant disease resistance and identifying the genes responsible for recruiting disease resistance-associated microbes through root exudates.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"91"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569615/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of the rhizobiome recruited by root exudates in plant disease resistance: current status and future directions.\",\"authors\":\"Zengwei Feng, Qiuhong Liang, Qing Yao, Yang Bai, Honghui Zhu\",\"doi\":\"10.1186/s40793-024-00638-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Root exudates serve as a bridge connecting plant roots and rhizosphere microbes, playing a key role in influencing the assembly and function of the rhizobiome. Recent studies have fully elucidated the role of root exudates in recruiting rhizosphere microbes to enhance plant performance, particularly in terms of plant resistance to soil-borne pathogens; however, it should be noted that the composition and amount of root exudates are primarily quantitative traits regulated by a large number of genes in plants. As a result, there are knowledge gaps in understanding the contribution of the rhizobiome to soil-borne plant disease resistance and the ternary link of plant genes, root exudates, and disease resistance-associated microbes. Advancements in technologies such as quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) offer opportunities for the identification of genes associated with quantitative traits. In the present review, we summarize recent studies on the interactions of plant and rhizosphere microbes through root exudates to enhance soil-borne plant disease resistance and also highlight methods for quantifying the contribution of the rhizobiome to plant disease resistance and identifying the genes responsible for recruiting disease resistance-associated microbes through root exudates.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"19 1\",\"pages\":\"91\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-024-00638-6\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00638-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The role of the rhizobiome recruited by root exudates in plant disease resistance: current status and future directions.
Root exudates serve as a bridge connecting plant roots and rhizosphere microbes, playing a key role in influencing the assembly and function of the rhizobiome. Recent studies have fully elucidated the role of root exudates in recruiting rhizosphere microbes to enhance plant performance, particularly in terms of plant resistance to soil-borne pathogens; however, it should be noted that the composition and amount of root exudates are primarily quantitative traits regulated by a large number of genes in plants. As a result, there are knowledge gaps in understanding the contribution of the rhizobiome to soil-borne plant disease resistance and the ternary link of plant genes, root exudates, and disease resistance-associated microbes. Advancements in technologies such as quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) offer opportunities for the identification of genes associated with quantitative traits. In the present review, we summarize recent studies on the interactions of plant and rhizosphere microbes through root exudates to enhance soil-borne plant disease resistance and also highlight methods for quantifying the contribution of the rhizobiome to plant disease resistance and identifying the genes responsible for recruiting disease resistance-associated microbes through root exudates.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.