Xinyuan Shao , Jonas W. Ringsberg , Hua-Dong Yao , Zhiyuan Li , Erland Johnson , Göran Fredriksson
{"title":"A comparison of two wave energy converters’ power performance and mooring fatigue characteristics – One WEC vs many WECs in a wave park with interaction effects","authors":"Xinyuan Shao , Jonas W. Ringsberg , Hua-Dong Yao , Zhiyuan Li , Erland Johnson , Göran Fredriksson","doi":"10.1016/j.joes.2023.07.007","DOIUrl":"10.1016/j.joes.2023.07.007","url":null,"abstract":"<div><p>The production of renewable energy is key to satisfying the increasing demand for energy without further increasing pollution. Harnessing ocean energy from waves has attracted attention due to its high energy density. This study compares two generations of floating heaving point absorber WEC, WaveEL 3.0 and WaveEL 4.0, regarding their power performance and mooring line fatigue characteristics, which are essential in, e.g., LCoE calculations. The main differences between the two WECs are the principal dimensions and minor differences in their geometries. The DNV software SESAM was used for simulations and analyses of these WECs in terms of buoy heave motion resonances for maximising energy harvesting, motion characteristics, mooring line forces, fatigue of mooring lines, and hydrodynamic power production. The first part of the study presents results from simulations of unit WEC in the frequency domain and in the time domain for regular wave and irregular sea state conditions. A verification of the two WECs’ motion responses and axial mooring line forces is made against measurement data from a full-scale installation. In the second part of the study, the influence of interaction effects is investigated when the WECs are installed in wave parks. The wave park simulations used a fully-coupled non-linear method in SESAM that calculates the motions of the WECs and the mooring line forces simultaneously in the time domain. The amount of fatigue damage accumulated in the mooring lines was calculated using a relative tension-based fatigue analysis method and the rainflow counting method. Several factors that influence the power performance of the wave park and the accumulated fatigue damage of the mooring lines, for example, the WEC distance of the wave park, the sea state conditions, and the direction of incoming waves, are simulated and discussed. The study's main conclusion is that WaveEL 4.0, which has a longer tube than WaveEL 3.0, absorbs more hydrodynamic energy due to larger heave motions and more efficient power production. At the same time, the accumulated fatigue damage in the moorings is lower compared to WaveEL 3.0 if the distance between the WECs in the wave park is not too short. Its motions in the horizontal plane are larger, which may require a larger distance between the WEC units in a wave park to avoid losing efficiency due to hydrodynamic interaction effects.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 446-460"},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48085462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting 3-DoF motions of a moored barge by machine learning","authors":"Yu Yang , Tao Peng , Shijun Liao","doi":"10.1016/j.joes.2022.08.001","DOIUrl":"10.1016/j.joes.2022.08.001","url":null,"abstract":"<div><p>The real-time prediction of a floating platform or a vessel is essential for motion-sensitive maritime activities. It can enhance the performance of motion compensation system and provide useful early-warning information. In this paper, we apply a machine learning technique to predict the surge, heave, and pitch motions of a moored rectangular barge excited by an irregular wave, which is purely based on the motion data. The dataset came from a model test performed in the deep-water ocean basin, at Shanghai Jiao Tong University, China. Using the trained machine learning model, the predictions of 3-DoF (degrees of freedom) motions can extend two to four wave cycles into the future with good accuracy. It shows great potential for applying the machine learning technique to forecast the motions of offshore platforms or vessels.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 336-343"},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45406874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical investigation into water entry problems of a flat plate with air pockets","authors":"Casey O'Connor, Saeed Mohajernasab, Nagi Abdussamie","doi":"10.1016/j.joes.2022.04.011","DOIUrl":"10.1016/j.joes.2022.04.011","url":null,"abstract":"<div><p>Computational Fluid Dynamics (CFD) investigations into water entry problems of a rigid flat plate with air pockets were systematically conducted. The Volume of Fluid (VOF) model was utilised to capture localised slamming phenomena that occur during, and post-impact events. The model's geometry was modified to include a pocket on the slamming impact surface to investigate the effect of air entrapment on the magnitude and distribution of slamming forces and pressures. A parametric study was conducted on the geometric parameters of the modelled pocket by altering its area, depth, and volume to examine the response of slamming force and pressure loading under several impact velocities. The numerical results of slamming forces and pressures were in good agreement with experimental drop test measurements (with relative error of -6% and 7% for the magnitude of slamming force and pressure, respectively). The numerical results proved that the peak pressure is proportional to the magnitude of impact velocity squared (<span><math><mrow><msub><mi>p</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>∝</mo><msup><mi>v</mi><mn>2</mn></msup></mrow></math></span>).</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 386-400"},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45276042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical analysis method of ship-ice collision-induced vibration of the polar transport vessel based on the full coupling of ship-ice-water-air","authors":"Yuan-He Shi , De-Qing Yang , Wen-Wei Wu","doi":"10.1016/j.joes.2023.04.002","DOIUrl":"10.1016/j.joes.2023.04.002","url":null,"abstract":"<div><p>As the Arctic Channel continues to be developed, collisions between polar navigation vessels and sea ice are inevitable, which will directly affect structural safety and vibration comfort. However, the numerical analysis method of ship–ice collision-induced vibration is not perfect, and the effect of fluid coupling is not typically considered. In this paper, a simplified numerical analysis method for ship–ice collision-induced vibration is proposed, in which a reliable ice load is obtained by first performing ship–ice–water–air coupled collision calculations, followed by ship–ice–water coupled vibration calculations to obtain the vibration response of the structure. In addition, this paper investigates the full coupling method and the modeling ranges and meshing sizes involved in the analysis ship–ice collision-induced vibration, and the computational efficiencies of the traditional ALE algorithm and S-ALE algorithm are compared. The results indicate that the simplified simulation analysis method and gradient meshing model improve the calculation accuracy and efficiency in ship-ice collision and vibration response analysis. Moreover, the modeling range of the water and air models cannot be less than 6 times the ship width, 2 times the ship length, and 1 times the ship depth, and the S-ALE algorithm saves 47.86% time compared to the ALE algorithm. The research results in this paper can provide a reference for the numerical simulation of ship–ice collision-induced vibration.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 323-335"},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41558026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Do Kyun Kim , Imjun Ban , Bee Yee Poh , Sung-Chul Shin
{"title":"A useful guide of effective mesh-size decision in predicting the ultimate strength of flat- and curved plates in compression","authors":"Do Kyun Kim , Imjun Ban , Bee Yee Poh , Sung-Chul Shin","doi":"10.1016/j.joes.2022.02.014","DOIUrl":"10.1016/j.joes.2022.02.014","url":null,"abstract":"<div><p>The present study aims to determine the appropriate size of mesh or the number of the element (NoE) for flat- and curved plates, which is suggested to assess its safety subjected to axial compression based on the ultimate limit state (ULS) design and analysis concept. The unstiffened panel (= plate) and stiffened panel, considered primary members of ships and ship-shaped offshore structures, are subjected to repeated axial compression and tension caused by continued vertical bending moments applied to the hull girder. Plates are attached with stiffeners by welding, and 6, 8 or 10 elements are generally recommended to allocate in flat-plate's breadth direction in between stiffeners for finite-element (FE) modelling, which enables the presentation of the shape of initial deflection applied to the plate. In the case of the load-shorting curve for curved plate, it is reported that the nonlinear behaviour characteristics, i.e., snap-through, snap-back, secondary buckling and others, appear in typical flank angle. To take this into account, we investigated the preferred number of elements (6, 8 or 10) generally applied to the flat plate whether it is an appropriate or more fine-sized element (or mesh) that should be considered. A useful guide is documented based on obtained outcomes which may help structural engineers select optimised mesh-size to predict ultimate strength and understand its characteristic of the flat and curved plates.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 401-417"},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48315019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental hydrodynamic assessment of a cylindrical-type floating solar system exposed to waves","authors":"Dallán Friel , Madjid Karimirad , Trevor Whittaker , John Doran","doi":"10.1016/j.joes.2023.08.004","DOIUrl":"https://doi.org/10.1016/j.joes.2023.08.004","url":null,"abstract":"<div><p>In this paper, an experimental investigation on the wave loads and structural motions of two semi-fixed semi-immersed horizontal cylinders type rafts in the free surface zone is conducted. The physical models are tested at the 1:4.5 scale and exposed to a range of regular and irregular waves in a wave flume at Queen's University Belfast. The physical models and experimental setup are discussed alongside an investigation of the hydrodynamic phenomena, surge forces, and dynamic responses that each structure exhibits in the coastal wave climates. Furthermore, an investigation into the wave attenuation by both models is carried out. The results show that the surge forces have a positive correlation with wave steepness for both models. Hydrodynamic phenomena such as wave runup and overtopping, radiative damping and reflected waves, constructive interference, diffraction and flow separation were identified during the experiments. A negative mean heave displacement is observed during the monochromatic sea states which could result in impact loading and submergence of the superstructure components and photovoltaic panels at full-scale. The results presented in this paper may be used to calibrate and verify numerical models that calculate the global responses and hydrodynamic forces. It may also benefit the design processes of geometrically similar floating solar technologies by providing data on surge loads, motion responses and hydrodynamic observations.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 461-473"},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50176849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yihou Wang , Shixiao Fu , Torgeir Moan , Yuwang Xu , Tianhu Cheng
{"title":"Hydroelasticity analysis of a vessel-shaped fish cage under incident, diffraction and radiation wave fields","authors":"Yihou Wang , Shixiao Fu , Torgeir Moan , Yuwang Xu , Tianhu Cheng","doi":"10.1016/j.joes.2023.05.001","DOIUrl":"10.1016/j.joes.2023.05.001","url":null,"abstract":"<div><p>Vessel-shaped fish cages are promising large aquaculture structures developed in recent years, with an overall length of nearly 400 m. In this paper, a coupled hydroelasticity model of a vessel-shaped fish cage is used to calculate the motion and structural response in the time domain. First, the floating body of the cage is discretized into a multimodule system to calculate the frequency-domain hydrodynamic loads. Then, the multimodule system is connected by equivalent elastic beams to consider the hydroelastic behavior in the time domain. The hydrodynamic loads of the multimodule system are transformed from the frequency-domain loads. Moreover, based on the velocity field transfer functions and the motion of the multimodule system, coupling wave fields considering incident, diffraction and radiation waves are built and used to calculate the loads on the net and steel frame. By iterating the motion response of the multimodule system and the hydrodynamic loads on the net and steel frame in the time domain, the balanced hydroelasticity response of the whole cage is finally obtained. The results show that the hydroelasticity effects have a significant influence on the vertical displacement and cross-sectional load effects of the vessel-shaped fish cage.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 4","pages":"Pages 418-434"},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44341939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large eddy simulation of plunging solitary wave: understanding the breaking and turbulent mechanisms along shoaling region","authors":"Abbas Rahmani, A. Keramat, Jinghua Wang, H. Duan","doi":"10.1016/j.joes.2023.07.008","DOIUrl":"https://doi.org/10.1016/j.joes.2023.07.008","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47549299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A machine learning model for fast approximation of free-surface Green's function and its application","authors":"Ke Zhan, R. Zhu, Dekang Xu","doi":"10.1016/j.joes.2023.08.002","DOIUrl":"https://doi.org/10.1016/j.joes.2023.08.002","url":null,"abstract":"","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":" ","pages":""},"PeriodicalIF":7.1,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42711552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}