{"title":"Spectral collocation with generalized Laguerre operational matrix for numerical solutions of fractional electrical circuit models","authors":"İbrahim Avcı","doi":"10.53391/mmnsa.1428035","DOIUrl":"https://doi.org/10.53391/mmnsa.1428035","url":null,"abstract":"In this paper, we introduce a pioneering numerical technique that combines generalized Laguerre polynomials with an operational matrix of fractional integration to address fractional models in electrical circuits. Specifically focusing on Resistor-Inductor ($RL$), Resistor-Capacitor ($RC$), Resonant (Inductor-Capacitor) ($LC$), and Resistor-Inductor-Capacitor ($RLC$) circuits within the framework of the Caputo derivative, our approach aims to enhance the accuracy of numerical solutions. We meticulously construct an operational matrix of fractional integration tailored to the generalized Laguerre basis vector, facilitating a transformation of the original fractional differential equations into a system of linear algebraic equations. By solving this system, we obtain a highly accurate approximate solution for the electrical circuit model under consideration. To validate the precision of our proposed method, we conduct a thorough comparative analysis, benchmarking our results against alternative numerical techniques reported in the literature and exact solutions where available. The numerical examples presented in our study substantiate the superior accuracy and reliability of our generalized Laguerre-enhanced operational matrix collocation method in effectively solving fractional electrical circuit models.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"114 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140360338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fractional mathematical model approach on glioblastoma growth: tumor visibility timing and patient survival","authors":"Nurdan Kar, N. Ozalp","doi":"10.53391/mmnsa.1438916","DOIUrl":"https://doi.org/10.53391/mmnsa.1438916","url":null,"abstract":"In this paper, we introduce a mathematical model given by \u0000begin{equation} \u0000 { }^c mathfrak{D}_t^alpha u = nabla cdot mathrm{D} nabla u + rho f(u) quad text{in } Omega, \u0000end{equation} \u0000where $f(u)=frac{1}{1-u/mathrm{K}}, , u/mathrm{K} neq 1, , mathrm{K} > 0$, to enhance established mathematical methodologies for better understanding glioblastoma dynamics at the macroscopic scale. The tumor growth model exhibits an innovative structure even within the conventional framework, including a proliferation term, $f(u)$, presented in a different form compared to existing macroscopic glioblastoma models. Moreover, it represents a further refined model by incorporating a calibration criterion based on the integration of a fractional derivative, $alpha$, which differs from the existing models for glioblastoma. Throughout this study, we initially discuss the modeling dynamics of the tumor growth model. Given the frequent recurrence observed in glioblastoma cases, we then track tumor mass formation and provide predictions for tumor visibility timing on medical imaging to elucidate the recurrence periods. Furthermore, we investigate the correlation between tumor growth speed and survival duration to uncover the relationship between these two variables through an experimental approach. To conduct these patient-specific analyses, we employ glioblastoma patient data and present the results via numerical simulations. In conclusion, the findings on tumor visibility timing align with empirical observations, and the investigations into patient survival further corroborate the well-established inter-patient variability for glioblastoma cases.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"45 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free convection at different locations of adiabatic elliptic blockage in a square enclosure","authors":"M. Fayz-al-asad","doi":"10.53391/mmnsa.1382516","DOIUrl":"https://doi.org/10.53391/mmnsa.1382516","url":null,"abstract":"The numerical simulation of free convection flow within a square-shaped enclosure for various orientations of elliptic blockage (EB) is performed in the present study. The bottom wall of the cavity remains uniformly heated, where the left and right (side) walls as well as the boundary wall of the elliptic blockage are insulated and the top wall remains at a cool temperature. As $Pr$ remains constant, the effects of different values of $Ra$ have a great influence on overall fluid flow and temperature gradient for three different locations: bottom elliptic blockage (BEB), center elliptic blockage (CEB) and top elliptic blockage (TEB), as a mass flow circulation has been identified, and a state of equilibrium has been established within the fluid flow simulations along with the isotherm contours. The outcomes of the numerical analysis are presented with the streamlines, isotherms, and variations of the average Nusselt number.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140370049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel Touchard polynomial-based spectral matrix collocation method for solving the Lotka-Volterra competition system with diffusion","authors":"M. Izadi, A. El-mesady, W. Adel","doi":"10.53391/mmnsa.1408997","DOIUrl":"https://doi.org/10.53391/mmnsa.1408997","url":null,"abstract":"This paper presents the computational solutions of a time-dependent nonlinear system of partial differential equations (PDEs) known as the Lotka-Volterra competition system with diffusion. We propose a combined semi-discretized spectral matrix collocation algorithm to solve this system of PDEs. The first part of the algorithm deals with the time-marching procedure, which is performed using the well-known Taylor series formula. The resulting linear systems of ordinary differential equations (ODEs) are then solved using the spectral matrix collocation technique based on the novel Touchard family of polynomials. We discuss and establish the error analysis and convergence of the proposed method. Additionally, we examine the stability analysis and the equilibrium points of the model to determine the stability condition for the system. We perform numerical simulations using diverse model parameters and with different Dirichlet and Neumann boundary conditions to demonstrate the utility and applicability of our combined Taylor-Touchard spectral collocation algorithm.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140396536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical approaches to controlling COVID-19: optimal control and financial benefits","authors":"Saida Id Ouaziz, Mohammed El Khomssi","doi":"10.53391/mmnsa.1373093","DOIUrl":"https://doi.org/10.53391/mmnsa.1373093","url":null,"abstract":"The global population has suffered extensively as an effect of the coronavirus infection, with the loss of many lives, adverse financial consequences, and increased impoverishment. In this paper, we propose an example of the non-linear mathematical modeling of the COVID-19 phenomenon. Using the fixed point theorem, we established the solution's existence and unicity. We demonstrate how, under the framework, the basic reproduction number can be redefined. The different equilibria of the model are identified, and their stability analyses are carefully examined. According to our argument, it is illustrated that there is a single optimal control that can be used to reduce the expense of the illness load and applied processes. The determination of optimal strategies is examined with the aid of Pontryagin's maximum principle. To support the analytical results, we perform comprehensive digital simulations using the Runge-Kutta 4th-order. The data simulated suggest that the effects of the recommended controls significantly impact the incidence of the disease, in contrast to the absence of control cases. Further, we calculate the incremental cost-effectiveness ratio to assess the cost and benefits of each potential combination of the two control measures. The findings indicate that public attention, personal hygiene practices, and isolating oneself will all contribute to slowing the spread of COVID-19. Furthermore, those who are infected can readily decrease their virus to become virtually non-detectable with treatment consent.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140501259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A harmonic oscillator model of atmospheric dynamics using the Newton-Kepler planetary approach","authors":"Alexander MUNSON","doi":"10.53391/mmnsa.1332893","DOIUrl":"https://doi.org/10.53391/mmnsa.1332893","url":null,"abstract":"Projection of future meteorological patterns such as median temperature and precipitation are necessary for governments to facilitate civil aviation, forecast agricultural productions, and advise future public energy policies. Various models were proposed based on historical data such as the short-term 7-day forecast or the long-term Global Forecast System to study climate change over the coming decades. We strike a balance by examining the harmonic oscillator model in mid-term weather projections. This model is the starting point to provide general mathematical guidelines to inform governmental agencies to forecast levels of energy consumptions for residential cooling in summer and heating in winter to provide energy subsidies for low-income populations and for non-profit organizations to support countries needing energy assistance. Additionally, mid-term meteorological models are especially useful during time of global energy disruptions. A model is derived based on orbital mechanics, planetary science, and astronomy using Newton’s Law of Universal Gravitation and Kepler’s Laws of Planetary Motions. We optimize the model with historical data on a specific region. The model’s predictions were then statistically compared with the actual data in the same time period in the region in a reverse goodness of fit test. We also gave certain directions on the generalized harmonic oscillator model in the future. In sum, the current harmonic oscillator method can be beneficially utilized by governments to forecast natural phenomena in order to provide timely assistance to respective populations such as in the control of infectious diseases or predicting extreme temperature fluctuations in the planning of agricultural productions.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136280181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-dimensional Cattaneo-Hristov heat diffusion in the half-plane","authors":"Beyza Billur İSKENDER EROĞLU","doi":"10.53391/mmnsa.1340302","DOIUrl":"https://doi.org/10.53391/mmnsa.1340302","url":null,"abstract":"In this paper, Cattaneo-Hristov heat diffusion is discussed in the half plane for the first time, and solved under two different boundary conditions. For the solution purpose, the Laplace, and the sine- and exponential- Fourier transforms with respect to time and space variables are applied, respectively. Since the fractional term in the problem is the Caputo-Fabrizio derivative with the exponential kernel, the solutions are in terms of time-dependent exponential and spatial-dependent Bessel functions. Behaviors of the temperature functions due to the change of different parameters of the problem are interpreted by giving 2D and 3D graphics.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136279871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding the mathematical background of Generative Adversarial Networks (GANs)","authors":"Bilgi YILMAZ, Ralf KORN","doi":"10.53391/mmnsa.1327485","DOIUrl":"https://doi.org/10.53391/mmnsa.1327485","url":null,"abstract":"Generative Adversarial Networks (GANs) have gained widespread attention since their introduction, leading to numerous extensions and applications of the original GAN idea. A thorough understanding of GANs' mathematical foundations is necessary to use and build upon these techniques. However, most studies on GANs are presented from a computer science or engineering perspective, which can be challenging for beginners to understand fully. Therefore, this paper aims to provide an overview of the mathematical background of GANs, including detailed proofs of optimal solutions for vanilla GANs and boundaries for $f$-GANs that minimize a variational approximation of the $f$-divergence between two distributions. These contributions will enhance the understanding of GANs for those with a mathematical background and pave the way for future research.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136341364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical solitons of the complex Ginzburg-Landau equation having dual power nonlinear form using $varphi ^{6}$-model expansion approach","authors":"Muhammad Abubakar ISAH, Asıf YOKUŞ","doi":"10.53391/mmnsa.1337648","DOIUrl":"https://doi.org/10.53391/mmnsa.1337648","url":null,"abstract":"This paper employs a novel $varphi ^{6}$-model expansion approach to get dark, bright, periodic, dark-bright, and singular soliton solutions to the complex Ginzburg-Landau equation with dual power-law non-linearity. The dual-power law found in photovoltaic materials is used to explain nonlinearity in the refractive index. The results of this paper may assist in comprehending some of the physical effects of various nonlinear physics models. For example, the hyperbolic sine arises in the calculation of the Roche limit and the gravitational potential of a cylinder, the hyperbolic tangent arises in the calculation of the magnetic moment and the rapidity of special relativity, and the hyperbolic cotangent arises in the Langevin function for magnetic polarization. Frequency values, one of the soliton's internal dynamics, are used to examine the behavior of the traveling wave. Finally, some of the obtained solitons' three-, two-dimensional, and contour graphs are plotted.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136341366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Umar Tasiu MUSTAPHA, Abdurrahman ADO, Abdullahi YUSUF, Sania QURESHİ, Salihu Sabiu MUSA
{"title":"Mathematical dynamics for HIV infections with public awareness and viral load detectability","authors":"Umar Tasiu MUSTAPHA, Abdurrahman ADO, Abdullahi YUSUF, Sania QURESHİ, Salihu Sabiu MUSA","doi":"10.53391/mmnsa.1349472","DOIUrl":"https://doi.org/10.53391/mmnsa.1349472","url":null,"abstract":"In this paper, we develop a nonlinear deterministic model that incorporates public awareness and treatment to describe the dynamics of HIV/AIDS in an infected population with detectable and undetectable viral load. The model undergoes backward bifurcation in which a stable disease-free equilibrium coexists with a stable endemic equilibrium. Numerical simulations carried out show the behavior of the state variables and the impact of public awareness in controlling the spread of HIV. The results show that public awareness will help in curtailing the spread of HIV infection, and when treatment is applied to infected individuals with detectable viral load can easily suppress their virus to become undetectable so that they cannot transmit HIV through sexual intercourse.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136336904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}