A fractional mathematical model approach on glioblastoma growth: tumor visibility timing and patient survival

Nurdan Kar, N. Ozalp
{"title":"A fractional mathematical model approach on glioblastoma growth: tumor visibility timing and patient survival","authors":"Nurdan Kar, N. Ozalp","doi":"10.53391/mmnsa.1438916","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a mathematical model given by \n\\begin{equation} \n { }^c \\mathfrak{D}_t^\\alpha u = \\nabla \\cdot \\mathrm{D} \\nabla u + \\rho f(u) \\quad \\text{in } \\Omega, \n\\end{equation} \nwhere $f(u)=\\frac{1}{1-u/\\mathrm{K}}, \\, u/\\mathrm{K} \\neq 1, \\, \\mathrm{K} > 0$, to enhance established mathematical methodologies for better understanding glioblastoma dynamics at the macroscopic scale. The tumor growth model exhibits an innovative structure even within the conventional framework, including a proliferation term, $f(u)$, presented in a different form compared to existing macroscopic glioblastoma models. Moreover, it represents a further refined model by incorporating a calibration criterion based on the integration of a fractional derivative, $\\alpha$, which differs from the existing models for glioblastoma. Throughout this study, we initially discuss the modeling dynamics of the tumor growth model. Given the frequent recurrence observed in glioblastoma cases, we then track tumor mass formation and provide predictions for tumor visibility timing on medical imaging to elucidate the recurrence periods. Furthermore, we investigate the correlation between tumor growth speed and survival duration to uncover the relationship between these two variables through an experimental approach. To conduct these patient-specific analyses, we employ glioblastoma patient data and present the results via numerical simulations. In conclusion, the findings on tumor visibility timing align with empirical observations, and the investigations into patient survival further corroborate the well-established inter-patient variability for glioblastoma cases.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"45 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Numerical Simulation with Applications","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53391/mmnsa.1438916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a mathematical model given by \begin{equation} { }^c \mathfrak{D}_t^\alpha u = \nabla \cdot \mathrm{D} \nabla u + \rho f(u) \quad \text{in } \Omega, \end{equation} where $f(u)=\frac{1}{1-u/\mathrm{K}}, \, u/\mathrm{K} \neq 1, \, \mathrm{K} > 0$, to enhance established mathematical methodologies for better understanding glioblastoma dynamics at the macroscopic scale. The tumor growth model exhibits an innovative structure even within the conventional framework, including a proliferation term, $f(u)$, presented in a different form compared to existing macroscopic glioblastoma models. Moreover, it represents a further refined model by incorporating a calibration criterion based on the integration of a fractional derivative, $\alpha$, which differs from the existing models for glioblastoma. Throughout this study, we initially discuss the modeling dynamics of the tumor growth model. Given the frequent recurrence observed in glioblastoma cases, we then track tumor mass formation and provide predictions for tumor visibility timing on medical imaging to elucidate the recurrence periods. Furthermore, we investigate the correlation between tumor growth speed and survival duration to uncover the relationship between these two variables through an experimental approach. To conduct these patient-specific analyses, we employ glioblastoma patient data and present the results via numerical simulations. In conclusion, the findings on tumor visibility timing align with empirical observations, and the investigations into patient survival further corroborate the well-established inter-patient variability for glioblastoma cases.
胶质母细胞瘤生长的分数数学模型方法:肿瘤可见时间与患者生存率
在本文中,我们引入了一个数学模型,其公式为 { }^c \mathfrak{D}_t^\alpha u = \nabla \cdot \mathrm{D}\nabla u + \rho f(u) \quad \text{in }\end{equation} where $f(u)=\frac{1}{1-u/\mathrm{K}},\, u/\mathrm{K}\neq 1, \, \mathrm{K}> 0$,以加强已有的数学方法,从而更好地理解胶质母细胞瘤的宏观动态。即使在传统框架内,肿瘤生长模型也表现出创新的结构,包括一个增殖项$f(u)$,与现有的宏观胶质母细胞瘤模型相比,以不同的形式呈现。此外,该模型还纳入了基于分数导数$\alpha$积分的校准标准,与现有的胶质母细胞瘤模型不同,是一个进一步完善的模型。在本研究中,我们首先讨论了肿瘤生长模型的建模动态。鉴于在胶质母细胞瘤病例中观察到的频繁复发,我们随后跟踪肿瘤肿块的形成,并提供医学成像中肿瘤可见时间的预测,以阐明复发期。此外,我们还研究了肿瘤生长速度与生存期之间的相关性,通过实验方法揭示这两个变量之间的关系。为了进行这些针对特定患者的分析,我们采用了胶质母细胞瘤患者的数据,并通过数值模拟展示了结果。总之,关于肿瘤可见时间的研究结果与经验观察相吻合,而对患者生存期的调查则进一步证实了胶质母细胞瘤病例的患者间变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信