Spectral collocation with generalized Laguerre operational matrix for numerical solutions of fractional electrical circuit models

İbrahim Avcı
{"title":"Spectral collocation with generalized Laguerre operational matrix for numerical solutions of fractional electrical circuit models","authors":"İbrahim Avcı","doi":"10.53391/mmnsa.1428035","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a pioneering numerical technique that combines generalized Laguerre polynomials with an operational matrix of fractional integration to address fractional models in electrical circuits. Specifically focusing on Resistor-Inductor ($RL$), Resistor-Capacitor ($RC$), Resonant (Inductor-Capacitor) ($LC$), and Resistor-Inductor-Capacitor ($RLC$) circuits within the framework of the Caputo derivative, our approach aims to enhance the accuracy of numerical solutions. We meticulously construct an operational matrix of fractional integration tailored to the generalized Laguerre basis vector, facilitating a transformation of the original fractional differential equations into a system of linear algebraic equations. By solving this system, we obtain a highly accurate approximate solution for the electrical circuit model under consideration. To validate the precision of our proposed method, we conduct a thorough comparative analysis, benchmarking our results against alternative numerical techniques reported in the literature and exact solutions where available. The numerical examples presented in our study substantiate the superior accuracy and reliability of our generalized Laguerre-enhanced operational matrix collocation method in effectively solving fractional electrical circuit models.","PeriodicalId":484817,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"114 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Numerical Simulation with Applications","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53391/mmnsa.1428035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a pioneering numerical technique that combines generalized Laguerre polynomials with an operational matrix of fractional integration to address fractional models in electrical circuits. Specifically focusing on Resistor-Inductor ($RL$), Resistor-Capacitor ($RC$), Resonant (Inductor-Capacitor) ($LC$), and Resistor-Inductor-Capacitor ($RLC$) circuits within the framework of the Caputo derivative, our approach aims to enhance the accuracy of numerical solutions. We meticulously construct an operational matrix of fractional integration tailored to the generalized Laguerre basis vector, facilitating a transformation of the original fractional differential equations into a system of linear algebraic equations. By solving this system, we obtain a highly accurate approximate solution for the electrical circuit model under consideration. To validate the precision of our proposed method, we conduct a thorough comparative analysis, benchmarking our results against alternative numerical techniques reported in the literature and exact solutions where available. The numerical examples presented in our study substantiate the superior accuracy and reliability of our generalized Laguerre-enhanced operational matrix collocation method in effectively solving fractional electrical circuit models.
使用广义拉盖尔运算矩阵的谱配位,用于分数电路模型的数值求解
在本文中,我们介绍了一种开创性的数值技术,它将广义拉盖尔多项式与分数积分运算矩阵相结合,以解决电路中的分数模型问题。我们的方法特别关注卡普托导数框架内的电阻器-电感器($RL$)、电阻器-电容器($RC$)、谐振(电感器-电容器)($LC$)和电阻器-电感器-电容器($RLC$)电路,旨在提高数值求解的准确性。我们根据广义拉盖尔基向量精心构建了分数积分运算矩阵,从而将原始分数微分方程转化为线性代数方程组。通过求解该系统,我们获得了所考虑的电路模型的高精度近似解。为了验证我们提出的方法的精确性,我们进行了全面的比较分析,将我们的结果与文献中报道的其他数值技术和可用的精确解进行了基准比较。我们在研究中提供的数值示例证明了我们的广义拉盖尔增强运算矩阵配准方法在有效求解分数电路模型方面具有卓越的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信