Biochemistry (Moscow)最新文献

筛选
英文 中文
T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide 与冠状病毒表位同源的 SPR 肽交叉反应的 T 细胞受体
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-10-09 DOI: 10.1134/S0006297924090098
Yana V. Serdyuk, Ksenia V. Zornikova, Dmitry V. Dianov, Nataliia O. Ivanova, Vassa D. Davydova, Ekaterina I. Fefelova, Tatiana A. Nenasheva, Saveliy A. Sheetikov, Apollinariya V. Bogolyubova
{"title":"T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide","authors":"Yana V. Serdyuk,&nbsp;Ksenia V. Zornikova,&nbsp;Dmitry V. Dianov,&nbsp;Nataliia O. Ivanova,&nbsp;Vassa D. Davydova,&nbsp;Ekaterina I. Fefelova,&nbsp;Tatiana A. Nenasheva,&nbsp;Saveliy A. Sheetikov,&nbsp;Apollinariya V. Bogolyubova","doi":"10.1134/S0006297924090098","DOIUrl":"10.1134/S0006297924090098","url":null,"abstract":"<p>The COVID-19 pandemic caused by the rapid spread of the novel coronavirus SARS-CoV-2, has promoted an interest in studying the T-cell immune response. It was found that the polyclonal and cross-reactive T-cell response against seasonal coronaviruses and other SARS-CoV-2 strains reduced disease severity. We investigated the immunodominant T-cell epitope SPRWYFYYYL from the nucleocapsid protein of SARS-CoV-2. The immune response to this epitope is characterized by the formation of highly homologous (convergent) receptors that have been found in the T-cell receptor (TCR) repertoires of different individuals. This epitope belongs to a group of highly conserved peptides that are rarely mutated in novel SARS-CoV-2 strains and are homologous to the epitopes of seasonal coronaviruses. It has been suggested that the cross-reactive response to homologous peptides contributes to the reduction of COVID-19 severity. However, some investigators have questioned this hypothesis, suggesting that the low affinity of the cross-reactive receptors reduces the strength of the immune response. The aim of this study was to evaluate the effect of amino acid substitutions in the SPR epitope on its binding affinity to specific TCRs. For this, we performed antigen-dependent cellular expansions were performed using samples from four COVID-19-transfected donors and sequenced their TCR repertoires. The resulting SPR-specific repertoire of β-chains in TCRs had a greater sequence diversity than the repertoire of α-chains. However, the TCR repertoires of all four donors contained public receptors, three of which were cloned and used to generate the Jurkat E6-1 TPR cell line. Only one of these receptors was activated by the SPR peptide and recognized with the same affinity by its mutant homologue LPRWYFYYY from seasonal coronaviruses. This indicates that the presence of the mutation did not affect the strength of the immune response, which may explain why the cross-reactive response to the SPR epitope is so frequent and contributes positively to COVID-19 infection.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Proteomics 超快蛋白质组学
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S0006297924080017
Ivan I. Fedorov, Sergey A. Protasov, Irina A. Tarasova, Mikhail V. Gorshkov
{"title":"Ultrafast Proteomics","authors":"Ivan I. Fedorov,&nbsp;Sergey A. Protasov,&nbsp;Irina A. Tarasova,&nbsp;Mikhail V. Gorshkov","doi":"10.1134/S0006297924080017","DOIUrl":"10.1134/S0006297924080017","url":null,"abstract":"<p>Current stage of proteomic research in the field of biology, medicine, development of new drugs, population screening, or personalized approaches to therapy dictates the need to analyze large sets of samples within the reasonable experimental time. Until recently, mass spectrometry measurements in proteomics were characterized as unique in identifying and quantifying cellular protein composition, but low throughput, requiring many hours to analyze a single sample. This was in conflict with the dynamics of changes in biological systems at the whole cellular proteome level upon the influence of external and internal factors. Thus, low speed of the whole proteome analysis has become the main factor limiting developments in functional proteomics, where it is necessary to annotate intracellular processes not only in a wide range of conditions, but also over a long period of time. Enormous level of heterogeneity of tissue cells or tumors, even of the same type, dictates the need to analyze biological systems at the level of individual cells. These studies involve obtaining molecular characteristics for tens, if not hundreds of thousands of individual cells, including their whole proteome profiles. Development of mass spectrometry technologies providing high resolution and mass measurement accuracy, predictive chromatography, new methods for peptide separation by ion mobility and processing of proteomic data based on artificial intelligence algorithms have opened a way for significant, if not radical, increase in the throughput of whole proteome analysis and led to implementation of the novel concept of ultrafast proteomics. Work done just in the last few years has demonstrated the proteome-wide analysis throughput of several hundred samples per day at a depth of several thousand proteins, levels unimaginable three or four years ago. The review examines background of these developments, as well as modern methods and approaches that implement ultrafast analysis of the entire proteome.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0006297924080017.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMDA Receptors and Indices of Energy Metabolism in Erythrocytes: Missing Link to the Assessment of Efficiency of Oxygen Transport in Hepatic Encephalopathy 红细胞中的 NMDA 受体和能量代谢指标:评估肝性脑病氧转运效率的缺失环节。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S000629792408008X
Gubidat A. Alilova, Lyudmila A. Tikhonova, Elena A. Kosenko
{"title":"NMDA Receptors and Indices of Energy Metabolism in Erythrocytes: Missing Link to the Assessment of Efficiency of Oxygen Transport in Hepatic Encephalopathy","authors":"Gubidat A. Alilova,&nbsp;Lyudmila A. Tikhonova,&nbsp;Elena A. Kosenko","doi":"10.1134/S000629792408008X","DOIUrl":"10.1134/S000629792408008X","url":null,"abstract":"<p>Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that develops in patients with severe liver dysfunction and/or portocaval shunting. Despite more than a century of research into the relationship between liver damage and development of encephalopathy, pathogenetic mechanisms of hepatic encephalopathy have not yet been fully elucidated. It is generally recognized, however, that the main trigger of neurologic complications in hepatic encephalopathy is the neurotoxin ammonia/ammonium, concentration of which in the blood increases to toxic levels (hyperammonemia), when detoxification function of the liver is impaired. Freely penetrating into brain cells and affecting NMDA-receptor-mediated signaling, ammonia triggers a pathological cascade leading to the sharp inhibition of aerobic glucose metabolism, oxidative stress, brain hypoperfusion, nerve cell damage, and formation of neurological deficits. Brain hypoperfusion, in turn, could be due to the impaired oxygen transport function of erythrocytes, because of the disturbed energy metabolism that occurs in the membranes and inside erythrocytes and controls affinity of hemoglobin for oxygen, which determines the degree of oxygenation of blood and tissues. In our recent study, this causal relationship was confirmed and novel ammonium-induced pro-oxidant effect mediated by excessive activation of NMDA receptors leading to impaired oxygen transport function of erythrocytes was revealed. For a more complete evaluation of “erythrocytic” factors that diminish brain oxygenation and lead to encephalopathy, in this study, activity of the enzymes and concentration of metabolites of glycolysis and Rapoport–Lubering shunt, as well as morphological characteristics of erythrocytes from the rats with acute hyperammoniemia were determined. To elucidate the role of NMDA receptors in the above processes, MK-801, a non-competitive receptor antagonist, was used. Based on the obtained results it can be concluded that it is necessary to consider ammonium-induced morphofunctional disorders of erythrocytes and hemoglobinemia which can occur as a result of alterations in highly integrated networks of metabolic pathways may act as an additional systemic “erythrocytic” pathogenetic factor to prevent the onset and progression of cerebral hypoperfusion in hepatic encephalopathy accompanied by hyperammonemia.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections 勘误:TRIM 基因家族参与先天性免疫系统对细菌感染反应的多向性机制》(Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections)一文的勘误。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S0006297924080121
Valentina V. Nenasheva, Ekaterina A. Stepanenko, Vyacheslav Z. Tarantul
{"title":"Erratum to: Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections","authors":"Valentina V. Nenasheva,&nbsp;Ekaterina A. Stepanenko,&nbsp;Vyacheslav Z. Tarantul","doi":"10.1134/S0006297924080121","DOIUrl":"10.1134/S0006297924080121","url":null,"abstract":"","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IGF Signaling in the Heart in Health and Disease 健康和疾病中心脏的 IGF 信号转导。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S0006297924080042
Daria A. Adasheva, Daria V. Serebryanaya
{"title":"IGF Signaling in the Heart in Health and Disease","authors":"Daria A. Adasheva,&nbsp;Daria V. Serebryanaya","doi":"10.1134/S0006297924080042","DOIUrl":"10.1134/S0006297924080042","url":null,"abstract":"<p>One of the most vital processes of the body is the cardiovascular system’s proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Modeling Methods in the Development of Affine and Specific Protein-Binding Agents 开发亲和性和特异性蛋白质结合剂的分子建模方法。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S0006297924080066
Shamsudin Sh. Nasaev, Artem R. Mukanov, Ivan V. Mishkorez, Ivan I. Kuznetsov, Iosif V. Leibin, Vladislava A. Dolgusheva, Gleb A. Pavlyuk, Artem L. Manasyan, Alexander V. Veselovsky
{"title":"Molecular Modeling Methods in the Development of Affine and Specific Protein-Binding Agents","authors":"Shamsudin Sh. Nasaev,&nbsp;Artem R. Mukanov,&nbsp;Ivan V. Mishkorez,&nbsp;Ivan I. Kuznetsov,&nbsp;Iosif V. Leibin,&nbsp;Vladislava A. Dolgusheva,&nbsp;Gleb A. Pavlyuk,&nbsp;Artem L. Manasyan,&nbsp;Alexander V. Veselovsky","doi":"10.1134/S0006297924080066","DOIUrl":"10.1134/S0006297924080066","url":null,"abstract":"<p>High-affinity and specific agents are widely applied in various areas, including diagnostics, scientific research, and disease therapy (as drugs and drug delivery systems). It takes significant time to develop them. For this reason, development of high-affinity agents extensively utilizes computer methods at various stages for the analysis and modeling of these molecules. The review describes the main affinity and specific agents, such as monoclonal antibodies and their fragments, antibody mimetics, aptamers, and molecularly imprinted polymers. The methods of their obtaining as well as their main advantages and disadvantages are briefly described, with special attention focused on the molecular modeling methods used for their analysis and development.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CYP74B34 Enzyme from Carrot (Daucus carota) with a Double Hydroperoxide Lyase/Epoxyalcohol Synthase Activity: Identification and Biochemical Properties 胡萝卜(Daucus carota)中具有双过氧化氢裂解酶/环氧醇合成酶活性的 CYP74B34 酶:鉴定和生化特性。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S0006297924080108
Yana Y. Toporkova, Svetlana S. Gorina, Tatiana M. Iljina, Natalia V. Lantsova, Alexander N. Grechkin
{"title":"CYP74B34 Enzyme from Carrot (Daucus carota) with a Double Hydroperoxide Lyase/Epoxyalcohol Synthase Activity: Identification and Biochemical Properties","authors":"Yana Y. Toporkova,&nbsp;Svetlana S. Gorina,&nbsp;Tatiana M. Iljina,&nbsp;Natalia V. Lantsova,&nbsp;Alexander N. Grechkin","doi":"10.1134/S0006297924080108","DOIUrl":"10.1134/S0006297924080108","url":null,"abstract":"<p>The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the <i>CYP74B34</i> gene from carrot (<i>Daucus carota</i> L.) and described the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13-hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic (9-HPOT and 13-HPOT, respectively) acids. CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldo acids (HPL products). The transformation of 13-HPOD led to the formation of aldo acids and epoxyalcohols [products of epoxyalcohol synthase (EAS) activity] as major and minor products, respectively. At the same time, conversion of 9-HPOD resulted in the formation of epoxyalcohols as the main products and aldo acids as the minor ones. Therefore, CYP74B34 is the first enzyme with a double HPL/EAS activity described in carrot. The presence of these catalytic activities was confirmed by analysis of the oxylipin profiles for the roots from young seedlings and mature plants. In addition, we substituted amino acid residues in one of the catalytically essential sites of the CYP74B34 and CYP74B33 proteins and investigated the properties of the obtained mutant enzymes.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Pharmacological Doses of Thiamine Benefit Patients with the Charcot–Marie–Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes 勘误:药理剂量的硫胺素通过改变二磷酸硫胺素水平和影响硫胺素依赖酶的调节而使夏科-玛丽-牙神经病患者受益。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S000629792408011X
Artem V. Artiukhov, Olga N. Solovjeva, Natalia V. Balashova, Olga P. Sidorova, Anastasia V. Graf, Victoria I. Bunik
{"title":"Erratum to: Pharmacological Doses of Thiamine Benefit Patients with the Charcot–Marie–Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes","authors":"Artem V. Artiukhov,&nbsp;Olga N. Solovjeva,&nbsp;Natalia V. Balashova,&nbsp;Olga P. Sidorova,&nbsp;Anastasia V. Graf,&nbsp;Victoria I. Bunik","doi":"10.1134/S000629792408011X","DOIUrl":"10.1134/S000629792408011X","url":null,"abstract":"","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic Phenomenon of Paramutation in Plants and Animals 动植物副变异的表观遗传现象。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S0006297924080054
Dina A. Kulikova, Alina V. Bespalova, Elena S. Zelentsova, Mikhail B. Evgen’ev, Sergei Yu. Funikov
{"title":"Epigenetic Phenomenon of Paramutation in Plants and Animals","authors":"Dina A. Kulikova,&nbsp;Alina V. Bespalova,&nbsp;Elena S. Zelentsova,&nbsp;Mikhail B. Evgen’ev,&nbsp;Sergei Yu. Funikov","doi":"10.1134/S0006297924080054","DOIUrl":"10.1134/S0006297924080054","url":null,"abstract":"<p>The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA Editing by ADAR Adenosine Deaminases in the Cell Models of CAG Repeat Expansion Diseases: Significant Effect of Differentiation from Stem Cells into Brain Organoids in the Absence of Substantial Influence of CAG Repeats on the Level of Editing CAG 重复序列扩增疾病细胞模型中 ADAR 腺苷脱氨酶的 RNA 编辑:在 CAG 重复序列对编辑水平没有实质性影响的情况下,从干细胞分化为脑器官组织的显著效果。
IF 2.3 4区 生物学
Biochemistry (Moscow) Pub Date : 2024-08-30 DOI: 10.1134/S0006297924080078
Viacheslav V. Kudriavskii, Anton O. Goncharov, Artem V. Eremeev, Evgenii S. Ruchko, Vladimir A. Veselovsky, Ksenia M. Klimina, Alexandra N. Bogomazova, Maria A. Lagarkova, Sergei A. Moshkovskii, Anna A. Kliuchnikova
{"title":"RNA Editing by ADAR Adenosine Deaminases in the Cell Models of CAG Repeat Expansion Diseases: Significant Effect of Differentiation from Stem Cells into Brain Organoids in the Absence of Substantial Influence of CAG Repeats on the Level of Editing","authors":"Viacheslav V. Kudriavskii,&nbsp;Anton O. Goncharov,&nbsp;Artem V. Eremeev,&nbsp;Evgenii S. Ruchko,&nbsp;Vladimir A. Veselovsky,&nbsp;Ksenia M. Klimina,&nbsp;Alexandra N. Bogomazova,&nbsp;Maria A. Lagarkova,&nbsp;Sergei A. Moshkovskii,&nbsp;Anna A. Kliuchnikova","doi":"10.1134/S0006297924080078","DOIUrl":"10.1134/S0006297924080078","url":null,"abstract":"<p>Expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but exact mechanism behind this is not yet fully understood. It is believed that the double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to the reduced A-to-I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from the patients with Huntington’s disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in the specific RNA regions. Differentiation of iPSCs into brain organoids led to increase in the ADAR2 gene expression and decrease in the expression of protein inhibitors of RNA editing. As a result, there was increase in the editing of specific ADAR2 substrates, which allowed identification of differential substrates of ADAR isoforms. However, comparison of the pathology and control groups did not show differences in the editing levels among the iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA <i>PWAR5</i> was nearly absent in this sample. It could be stated in conclusion that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信