International Journal of Biomedical Imaging最新文献

筛选
英文 中文
Corrigendum to “Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery” “肿瘤切除手术中脑转移的术中成像方式和补偿”的勘误表
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2019-10-01 DOI: 10.1155/2019/9249016
Siming Bayer, A. Maier, M. Ostermeier, R. Fahrig
{"title":"Corrigendum to “Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery”","authors":"Siming Bayer, A. Maier, M. Ostermeier, R. Fahrig","doi":"10.1155/2019/9249016","DOIUrl":"https://doi.org/10.1155/2019/9249016","url":null,"abstract":"[This corrects the article DOI: 10.1155/2017/6028645.].","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":" ","pages":""},"PeriodicalIF":7.6,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9249016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48243249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Semi-Automated Usability Evaluation Framework for Interactive Image Segmentation Systems 交互式图像分割系统的半自动化可用性评估框架
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2019-09-01 DOI: 10.1155/2019/1464592
Mario Amrehn, S. Steidl, Reinier Kortekaas, Maddalena Strumia, M. Weingarten, M. Kowarschik, A. Maier
{"title":"A Semi-Automated Usability Evaluation Framework for Interactive Image Segmentation Systems","authors":"Mario Amrehn, S. Steidl, Reinier Kortekaas, Maddalena Strumia, M. Weingarten, M. Kowarschik, A. Maier","doi":"10.1155/2019/1464592","DOIUrl":"https://doi.org/10.1155/2019/1464592","url":null,"abstract":"For complex segmentation tasks, the achievable accuracy of fully automated systems is inherently limited. Specifically, when a precise segmentation result is desired for a small amount of given data sets, semi-automatic methods exhibit a clear benefit for the user. The optimization of human computer interaction (HCI) is an essential part of interactive image segmentation. Nevertheless, publications introducing novel interactive segmentation systems (ISS) often lack an objective comparison of HCI aspects. It is demonstrated that even when the underlying segmentation algorithm is the same throughout interactive prototypes, their user experience may vary substantially. As a result, users prefer simple interfaces as well as a considerable degree of freedom to control each iterative step of the segmentation. In this article, an objective method for the comparison of ISS is proposed, based on extensive user studies. A summative qualitative content analysis is conducted via abstraction of visual and verbal feedback given by the participants. A direct assessment of the segmentation system is executed by the users via the system usability scale (SUS) and AttrakDiff-2 questionnaires. Furthermore, an approximation of the findings regarding usability aspects in those studies is introduced, conducted solely from the system-measurable user actions during their usage of interactive segmentation prototypes. The prediction of all questionnaire results has an average relative error of 8.9%, which is close to the expected precision of the questionnaire results themselves. This automated evaluation scheme may significantly reduce the resources necessary to investigate each variation of a prototype's user interface (UI) features and segmentation methodologies.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2019 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/1464592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47847902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Automated Estimation of Acute Infarct Volume from Noncontrast Head CT Using Image Intensity Inhomogeneity Correction 使用图像强度不均匀性校正的非对比头部CT急性梗死体积的自动估计
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2019-08-21 DOI: 10.1155/2019/1720270
K. Cauley, G. Mongelluzzo, S. Fielden
{"title":"Automated Estimation of Acute Infarct Volume from Noncontrast Head CT Using Image Intensity Inhomogeneity Correction","authors":"K. Cauley, G. Mongelluzzo, S. Fielden","doi":"10.1155/2019/1720270","DOIUrl":"https://doi.org/10.1155/2019/1720270","url":null,"abstract":"Identification of early ischemic changes (EIC) on noncontrast head CT scans performed within the first few hours of stroke onset may have important implications for subsequent treatment, though early stroke is poorly delimited on these studies. Lack of sharp lesion boundary delineation in early infarcts precludes manual volume measures, as well as measures using edge-detection or region-filling algorithms. We wished to test a hypothesis that image intensity inhomogeneity correction may provide a sensitive method for identifying the subtle regional hypodensity which is characteristic of early ischemic infarcts. A digital image analysis algorithm was developed using image intensity inhomogeneity correction (IIC) and intensity thresholding. Two different IIC algorithms (FSL and ITK) were compared. The method was evaluated using simulated infarcts and clinical cases. For synthetic infarcts, measured infarct volumes demonstrated strong correlation to the true lesion volume (for 20% decreased density “infarcts,” Pearson r = 0.998 for both algorithms); both algorithms demonstrated improved accuracy with increasing lesion size and decreasing lesion density. In clinical cases (41 acute infarcts in 30 patients), calculated infarct volumes using FSL IIC correlated with the ASPECTS scores (Pearson r = 0.680) and the admission NIHSS (Pearson r = 0.544). Calculated infarct volumes were highly correlated with the clinical decision to treat with IV-tPA. Image intensity inhomogeneity correction, when applied to noncontrast head CT, provides a tool for image analysis to aid in detection of EIC, as well as to evaluate and guide improvements in scan quality for optimal detection of EIC.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":" ","pages":""},"PeriodicalIF":7.6,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/1720270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48989856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Towards Reinforced Brain Tumor Segmentation on MRI Images Based on Temperature Changes on Pathologic Area. 基于病理区域温度变化的MRI图像强化脑肿瘤分割。
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2019-03-03 eCollection Date: 2019-01-01 DOI: 10.1155/2019/1758948
Abdelmajid Bousselham, Omar Bouattane, Mohamed Youssfi, Abdelhadi Raihani
{"title":"Towards Reinforced Brain Tumor Segmentation on MRI Images Based on Temperature Changes on Pathologic Area.","authors":"Abdelmajid Bousselham,&nbsp;Omar Bouattane,&nbsp;Mohamed Youssfi,&nbsp;Abdelhadi Raihani","doi":"10.1155/2019/1758948","DOIUrl":"https://doi.org/10.1155/2019/1758948","url":null,"abstract":"<p><p>Brain tumor segmentation is the process of separating the tumor from normal brain tissues; in clinical routine, it provides useful information for diagnosis and treatment planning. However, it is still a challenging task due to the irregular form and confusing boundaries of tumors. Tumor cells thermally represent a heat source; their temperature is high compared to normal brain cells. The main aim of the present paper is to demonstrate that thermal information of brain tumors can be used to reduce false positive and false negative results of segmentation performed in MRI images. Pennes bioheat equation was solved numerically using the finite difference method to simulate the temperature distribution in the brain; Gaussian noises of ±2% were added to the simulated temperatures. Canny edge detector was used to detect tumor contours from the calculated thermal map, as the calculated temperature showed a large gradient in tumor contours. The proposed method is compared to Chan-Vese based level set segmentation method applied to T1 contrast-enhanced and Flair MRI images of brains containing tumors with ground truth. The method is tested in four different phantom patients by considering different tumor volumes and locations and 50 synthetic patients taken from BRATS 2012 and BRATS 2013. The obtained results in all patients showed significant improvement using the proposed method compared to segmentation by level set method with an average of 0.8% of the tumor area and 2.48% of healthy tissue was differentiated using thermal images only. We conclude that tumor contours delineation based on tumor temperature changes can be exploited to reinforce and enhance segmentation algorithms in MRI diagnostic.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":" ","pages":"1758948"},"PeriodicalIF":7.6,"publicationDate":"2019-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/1758948","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37116337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
Measuring Surface Area of Skin Lesions with 2D and 3D Algorithms. 用二维和三维算法测量皮肤病变表面积。
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2019-01-15 eCollection Date: 2019-01-01 DOI: 10.1155/2019/4035148
Houman Mirzaalian Dastjerdi, Dominique Töpfer, Stefan J Rupitsch, Andreas Maier
{"title":"Measuring Surface Area of Skin Lesions with 2D and 3D Algorithms.","authors":"Houman Mirzaalian Dastjerdi,&nbsp;Dominique Töpfer,&nbsp;Stefan J Rupitsch,&nbsp;Andreas Maier","doi":"10.1155/2019/4035148","DOIUrl":"https://doi.org/10.1155/2019/4035148","url":null,"abstract":"<p><strong>Purpose: </strong>The treatment of skin lesions of various kinds is a common task in clinical routine. Apart from wound care, the assessment of treatment efficacy plays an important role. In this paper, we present a new approach to measure the skin lesion surface in two and three dimensions.</p><p><strong>Methods: </strong>For the 2D approach, a single photo containing a flexible paper ruler is taken. After semi-automatic segmentation of the lesion, evaluation is based on local scale estimation using the ruler. For the 3D approach, reconstruction is based on Structure from Motion. Roughly outlining the region of interest around the lesion is required for both methods.</p><p><strong>Results: </strong>The measurement evaluation was performed on 117 phantom images and five phantom videos for 2D and 3D approach, respectively. We found an absolute error of 0.99±1.18  cm<sup>2</sup> and a relative error 9.89± 9.31% for 2D. These errors are <1  cm<sup>2</sup> and <5% for five test phantoms in our 3D case. As expected, the error of 2D surface area measurement increased by approximately 10% for wounds on the bent surface compared to wounds on the flat surface. Using our method, the only user interaction is to roughly outline the region of interest around the lesion.</p><p><strong>Conclusions: </strong>We developed a new wound segmentation and surface area measurement technique for skin lesions even on a bent surface. The 2D technique provides the user with a fast, user-friendly segmentation and measurement tool with reasonable accuracy for home care assessment of treatment. For 3D only preliminary results could be provided. Measurements were only based on phantoms and have to be repeated with real clinical data.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":" ","pages":"4035148"},"PeriodicalIF":7.6,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/4035148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36976156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Magnetic Resonance Angiography Shows Increased Arterial Blood Supply Associated with Murine Mammary Cancer. 磁共振血管造影显示动脉供血增加与小鼠乳腺癌有关。
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2019-01-01 DOI: 10.1155/2019/5987425
Devkumar Mustafi, Abby Leinroth, Xiaobing Fan, Erica Markiewicz, Marta Zamora, Jeffrey Mueller, Suzanne D Conzen, Gregory S Karczmar
{"title":"Magnetic Resonance Angiography Shows Increased Arterial Blood Supply Associated with Murine Mammary Cancer.","authors":"Devkumar Mustafi,&nbsp;Abby Leinroth,&nbsp;Xiaobing Fan,&nbsp;Erica Markiewicz,&nbsp;Marta Zamora,&nbsp;Jeffrey Mueller,&nbsp;Suzanne D Conzen,&nbsp;Gregory S Karczmar","doi":"10.1155/2019/5987425","DOIUrl":"https://doi.org/10.1155/2019/5987425","url":null,"abstract":"Breast cancer is a major cause of morbidity and mortality in Western women. Tumor neoangiogenesis, the formation of new blood vessels from pre-existing ones, may be used as a prognostic marker for cancer progression. Clinical practice uses dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) to detect cancers based on increased blood flow and capillary permeability. However, DCE-MRI requires repeated injections of contrast media. Therefore we explored the use of noninvasive time-of-flight (TOF) MR angiography for serial studies of mouse mammary glands to measure the number and size of arteries feeding mammary glands with and without cancer. Virgin female C3(1) SV40 TAg mice (n=9), aged 18-20 weeks, were imaged on a 9.4 Tesla small animal scanner. Multislice T2-weighted (T2W) images and TOF-MRI angiograms were acquired over inguinal mouse mammary glands. The data were analyzed to determine tumor burden in each mammary gland and the volume of arteries feeding each mammary gland. After in vivo MRI, inguinal mammary glands were excised and fixed in formalin for histology. TOF angiography detected arteries with a diameter as small as 0.1 mm feeding the mammary glands. A significant correlation (r=0.79; p< 0.0001) was found between tumor volume and the arterial blood volume measured in mammary glands. Mammary arterial blood volumes ranging from 0.08 mm3 to 3.81 mm3 were measured. Tumors and blood vessels found on in vivo T2W and TOF images, respectively, were confirmed with ex vivo histological images. These results demonstrate increased recruitment of arteries to mammary glands with cancer, likely associated with neoangiogenesis. Neoangiogenesis may be detected by TOF angiography without injection of contrast agents. This would be very useful in mouse models where repeat placement of I.V. lines is challenging. In addition, analogous methods could be tested in humans to evaluate the vasculature of suspicious lesions without using contrast agents.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2019 ","pages":"5987425"},"PeriodicalIF":7.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/5987425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10679678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Review: On Segmentation of Nodules from Posterior and Anterior Chest Radiographs. 回顾:胸部前后片结节分割的研究。
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2018-10-18 eCollection Date: 2018-01-01 DOI: 10.1155/2018/9752638
S K Chaya Devi, T Satya Savithri
{"title":"Review: On Segmentation of Nodules from Posterior and Anterior Chest Radiographs.","authors":"S K Chaya Devi,&nbsp;T Satya Savithri","doi":"10.1155/2018/9752638","DOIUrl":"https://doi.org/10.1155/2018/9752638","url":null,"abstract":"<p><p>Lung cancer is one of the major types of cancer in the world. Survival rate can be increased if the disease can be identified early. Posterior and anterior chest radiography and computerized tomography scans are the most used diagnosis techniques for detecting tumor from lungs. Posterior and anterior chest radiography requires less radiation dose and is available in most of the diagnostic centers and it costs less compared to the remaining diagnosis techniques. So PA chest radiography became the most commonly used technique for lung cancer detection. Because of superimposed anatomical structures present in the image, sometimes radiologists cannot find abnormalities from the image. To help radiologists in diagnosing tumor from PA chest radiographic images range of CAD scheme has been developed for the past three decades. These computerized tools may be used by radiologists as a second opinion in detecting tumor. Literature survey on detecting tumors from chest graphs is presented in this paper.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"9752638"},"PeriodicalIF":7.6,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9752638","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36781771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An Automated Approach for Epilepsy Detection Based on Tunable Q-Wavelet and Firefly Feature Selection Algorithm. 基于可调q -小波和萤火虫特征选择算法的癫痫自动检测方法。
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2018-09-10 eCollection Date: 2018-01-01 DOI: 10.1155/2018/5812872
Ahmed I Sharaf, Mohamed Abu El-Soud, Ibrahim M El-Henawy
{"title":"An Automated Approach for Epilepsy Detection Based on Tunable <i>Q</i>-Wavelet and Firefly Feature Selection Algorithm.","authors":"Ahmed I Sharaf,&nbsp;Mohamed Abu El-Soud,&nbsp;Ibrahim M El-Henawy","doi":"10.1155/2018/5812872","DOIUrl":"https://doi.org/10.1155/2018/5812872","url":null,"abstract":"<p><p>Detection of epileptic seizures using an electroencephalogram (EEG) signals is a challenging task that requires a high level of skilled neurophysiologists. Therefore, computer-aided detection provides an asset to the neurophysiologist in interpreting the EEG. This paper introduces a novel approach to recognize and classify the epileptic seizure and seizure-free EEG signals automatically by an intelligent computer-aided method. Moreover, the prediction of the preictal phase of the epilepsy is proposed to assist the neurophysiologist in the clinic. The proposed method presents two perspectives for the EEG signal processing to detect and classify the seizures and seizure-free signals. The first perspectives consider the EEG signal as a nonlinear time series. A tunable <i>Q</i>-wavelet is applied to decompose the signal into smaller segments called subbands. Then a chaotic, statistical, and power spectrum features sets are extracted from each subband. The second perspectives process the EEG signal as an image; hence the gray-level co-occurrence matrix is determined from the image to obtain the textures of contrast, correlation, energy, and homogeneity. Due to a large number of features obtained, a feature selection algorithm based on firefly optimization was applied. The firefly optimization reduces the original set of features and generates a reduced compact set. A random forest classifier is trained for the classification and prediction of the seizures and seizure-free signals. Afterward, a dataset from the University of Bonn, Germany, is used for benchmarking and evaluation. The proposed approach provided a significant result compared with other recent work regarding accuracy, recall, specificity, F-measure, and Matthew's correlation coefficient.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"5812872"},"PeriodicalIF":7.6,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5812872","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36541471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Super-Resolution of Magnetic Resonance Images via Convex Optimization with Local and Global Prior Regularization and Spectrum Fitting. 基于局部和全局先验正则化和频谱拟合的凸优化磁共振图像超分辨率。
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2018-09-02 eCollection Date: 2018-01-01 DOI: 10.1155/2018/9262847
Naoki Kawamura, Tatsuya Yokota, Hidekata Hontani
{"title":"Super-Resolution of Magnetic Resonance Images via Convex Optimization with Local and Global Prior Regularization and Spectrum Fitting.","authors":"Naoki Kawamura,&nbsp;Tatsuya Yokota,&nbsp;Hidekata Hontani","doi":"10.1155/2018/9262847","DOIUrl":"https://doi.org/10.1155/2018/9262847","url":null,"abstract":"<p><p>Given a low-resolution image, there are many challenges to obtain a super-resolved, high-resolution image. Many of those approaches try to simultaneously upsample and deblur an image in signal domain. However, the nature of the super-resolution is to restore high-frequency components in frequency domain rather than upsampling in signal domain. In that sense, there is a close relationship between super-resolution of an image and extrapolation of the spectrum. In this study, we propose a novel framework for super-resolution, where the high-frequency components are theoretically restored with respect to the frequency fidelities. This framework helps to introduce multiple simultaneous regularizers in both signal and frequency domains. Furthermore, we propose a new super-resolution model where frequency fidelity, low-rank (LR) prior, low total variation (TV) prior, and boundary prior are considered at once. The proposed method is formulated as a convex optimization problem which can be solved by the alternating direction method of multipliers. The proposed method is the generalized form of the multiple super-resolution methods such as TV super-resolution, LR and TV super-resolution, and the Gerchberg method. Experimental results show the utility of the proposed method comparing with some existing methods using both simulational and practical images.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"9262847"},"PeriodicalIF":7.6,"publicationDate":"2018-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9262847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36518770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Corrigendum to "Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography". “光子计数计算机断层扫描的多色迭代统计材料图像重建”的勘误表。
IF 7.6
International Journal of Biomedical Imaging Pub Date : 2018-08-09 eCollection Date: 2018-01-01 DOI: 10.1155/2018/5932653
Thomas Weidinger, Thorsten M Buzug, Thomas G Flohr, Steffen Kappler, Karl Stierstorfer
{"title":"Corrigendum to \"Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography\".","authors":"Thomas Weidinger,&nbsp;Thorsten M Buzug,&nbsp;Thomas G Flohr,&nbsp;Steffen Kappler,&nbsp;Karl Stierstorfer","doi":"10.1155/2018/5932653","DOIUrl":"https://doi.org/10.1155/2018/5932653","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2016/5871604.].</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"5932653"},"PeriodicalIF":7.6,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5932653","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36455689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信