Frontiers in Astronomy and Space Sciences最新文献

筛选
英文 中文
Dispersive propagation of nuclear electromagnetic pulse in the ionosphere 核电磁脉冲在电离层中的色散传播
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-09 DOI: 10.3389/fspas.2023.1201921
Yongli Wei, Dinghan Zhu, Zongxiang Li, Lihua Wang, Yuan Wang, Tianchi Zhang, Bin Xing, Baofeng Cao, Peng Li
{"title":"Dispersive propagation of nuclear electromagnetic pulse in the ionosphere","authors":"Yongli Wei, Dinghan Zhu, Zongxiang Li, Lihua Wang, Yuan Wang, Tianchi Zhang, Bin Xing, Baofeng Cao, Peng Li","doi":"10.3389/fspas.2023.1201921","DOIUrl":"https://doi.org/10.3389/fspas.2023.1201921","url":null,"abstract":"Introduction: On the propagation path to the satellite, the ionosphere will distort the nuclear electromagnetic pulse (NEMP) and change its physical properties. Methods: This paper proposes a method for calculating the propagation of NEMP to the satellite. The method decomposes NEMP into the superposition of simple harmonic waves, and each simple harmonic wave is calculated separately in the ionosphere. With the consideration of different time of arrival and critical frequency of the ionosphere, the NEMP after propagating in the ionosphere is obtained by superposition of simple harmonic waves in time domain rather than the inverse Fourier transform which will erase the time domain information. Results: The results show that NEMP is dispersive in ionosphere with the pulse broadened, the speeds changed and the bandwidth narrowed. The time-frequency spectrum can provide the frequency band where the signal energy is located. Discussion: Our proposed method provides a simple and effective way to calculate the NEMP propagation in the ionosphere, which should afford help to the design of NEMP receivers and the selection of satellite orbit altitude.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" 36","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2a Results: galaxy to cloud scales 2a结果:星系到云的尺度
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-09 DOI: 10.3389/fspas.2023.1272771
Clare Dobbs
{"title":"2a Results: galaxy to cloud scales","authors":"Clare Dobbs","doi":"10.3389/fspas.2023.1272771","DOIUrl":"https://doi.org/10.3389/fspas.2023.1272771","url":null,"abstract":"Simulations from the scales of isolated galaxies to clouds have been instrumental in informing us about molecular cloud formation and evolution. Simulations are able to investigate the roles of gravity, feedback, turbulence, heating and cooling, and magnetic fields on the physics of the interstellar medium, and star formation. Compared to simulations of individual clouds, galactic and sub-galactic scale simulations can include larger galactic scale processes such as spiral arms, bars, and larger supernovae bubbles, which may influence star formation. Simulations show cloud properties and lifetimes in broad agreement with observations. Gravity and spiral arms are required to produce more massive GMCs, whilst stellar feedback, likely photoionisation, leads to relatively short cloud lifetimes. On larger scales, supernovae may be more dominant in driving the structure and dynamics, but photoionisation may still have a role. In terms of the dynamics, feedback is probably the main driver of velocity dispersions, but large scale processes such as gravity and spiral arms may also be significant. Magnetic fields are generally found to decrease star formation on galaxy or cloud scales, and simulations are ongoing to study whether clouds are sub or supercritical on different scales in galaxy scale simulations. Simulations on subgalactic scales, or zoom in simulations, allow better resolution of feedback processes, filamentary structure within clouds, and the study of stellar clusters.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" 38","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135292445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the isomeric yield ratio in the photoneutron reaction of natural holmium induced by laser-accelerated electron beams 激光加速电子束诱导天然钬光-中子反应中异构体产率的研究
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-08 DOI: 10.3389/fspas.2023.1265919
Jingli Zhang, Wei Qi, Wenru Fan, Zongwei Cao, Kaijun Luo, Changxiang Tan, Xiaohui Zhang, Zhigang Deng, Zhimeng Zhang, Xinxiang Li, Yun Yuan, Wen Luo, Weimin Zhou
{"title":"Study of the isomeric yield ratio in the photoneutron reaction of natural holmium induced by laser-accelerated electron beams","authors":"Jingli Zhang, Wei Qi, Wenru Fan, Zongwei Cao, Kaijun Luo, Changxiang Tan, Xiaohui Zhang, Zhigang Deng, Zhimeng Zhang, Xinxiang Li, Yun Yuan, Wen Luo, Weimin Zhou","doi":"10.3389/fspas.2023.1265919","DOIUrl":"https://doi.org/10.3389/fspas.2023.1265919","url":null,"abstract":"Introduction: An accurate knowledge of the isomeric yield ratio (IR) induced by the photonuclear reaction is crucial to study the nuclear structure and reaction mechanisms. 165 Ho is a good candidate for the investigation of the IR since the Ho target has a natural abundance of 100% and the residual nuclide has a good decay property. Methods: In this study, the photoneutron production of 164m, g Ho induced by laser-accelerated electron beams is investigated experimentally. The γ-ray spectra of activated Ho foils are off-line detected. Since the direct transitions from the 164m Ho are not successfully observed, we propose to extract the IRs of the 164m, g Ho using only the photopeak counts from the ground-state decay. Results: The production yields of 164m, g Ho are extracted to be (0.45 ± 0.10) × 10 6 and (1.48 ± 0.14) × 10 6 per laser shot, respectively. The resulting IR is obtained to be 0.30 ± 0.08 at the effective γ-ray energy of 12.65 MeV. Discussion: The present data, available experimental data, and TALYS calculations are then compared to examine the role of the excitation energy. It is found that besides the giant dipole resonance, the excitation energy effect also plays a key role in the determination of the IRs.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"359 20","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135393246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical analysis of equatorial electrojet responses to the transient changes of solar wind conditions 赤道电喷流对太阳风瞬态变化响应的统计分析
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1306279
Jiawei Zhang, Qiaoling Li, Shuhan Li, Jing Liu
{"title":"Statistical analysis of equatorial electrojet responses to the transient changes of solar wind conditions","authors":"Jiawei Zhang, Qiaoling Li, Shuhan Li, Jing Liu","doi":"10.3389/fspas.2023.1306279","DOIUrl":"https://doi.org/10.3389/fspas.2023.1306279","url":null,"abstract":"Introduction: Prior case studies have indicated that changes in solar wind conditions have a significant impact on equatorial ionospheric electrodynamics. However, there have been limited statistical studies on this topic, impairing our understanding of the coupling between solar wind, magnetosphere, and equatorial ionosphere electrodynamics. Methods: In this study, we conducted a superposed epoch analysis of long-term data from the South America equatorial electrojet (EEJ) spanning from 2001 to 2021 examining the responses of the equatorial ionospheric electric field to step-like changes in solar wind velocity, density, dynamic pressure, and interplanetary magnetic field (IMF) B z . Result: Our study shows that step-like changes in solar wind velocity, density, and dynamic pressure can trigger changes in EEJ within ∼20–40 min. EEJ exhibits the highest sensitivity to variations in solar wind velocity while being relatively less sensitive to changes in dynamic pressure. Furthermore, the response of EEJ shows greater responsiveness to northward IMF B z compared to southward IMF B z . Discussion: Our work provides statistical evidence of how changes in solar wind can lead to changes in low-latitude ionospheric EEJ. We inferred that the changes in solar wind conditions cause magnetospheric deformation and changes in magnetic reconnection rates, leading to the fluctuations of the ionospheric electric field and the resultant EEJ variations.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"69 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal fluctuations, QNMs, and emission energy of charged ADS black hole with nonlinear electrodynamics 非线性电动力学下带电ADS黑洞的热涨落、QNMs和发射能量
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1174029
Faisal Javed, Abdul Basit, Aylin Caliskan, Ertan Güdekli
{"title":"Thermal fluctuations, QNMs, and emission energy of charged ADS black hole with nonlinear electrodynamics","authors":"Faisal Javed, Abdul Basit, Aylin Caliskan, Ertan Güdekli","doi":"10.3389/fspas.2023.1174029","DOIUrl":"https://doi.org/10.3389/fspas.2023.1174029","url":null,"abstract":"This study examines the thermodynamics of charged anti-de Sitter (AdS) black holes (BHs) with nonlinear electrodynamics (NED) using quasinormal modes (QNMs) and thermal fluctuations. For this purpose, we calculate the Hawking temperature and discuss the stable configuration of the considered black hole using heat capacity. First, we study the interesting aspects of the emission of energy. Then, we explore the effects of thermal corrections on thermodynamic quantities and their corrected energies. We study the phase transitions of the system in the background of thermal fluctuations. It is concluded that the presence of a coupling constant enhances the thermodynamically stable configuration of uncharged and charged AdS BH geometries. We highlight that our results are in good agreement with the thermodynamics of the previous black hole solutions and assumptions presented in the literature.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"152 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron cyclotron harmonic waves in Jovian magnetosphere as seen by Juno 朱诺号观测到的木星磁层中的电子回旋谐波
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1274760
J. Joseph, A. N. Jaynes, W. S. Kurth, J. D. Menietti, J. E. P. Connerney, S. J. Bolton
{"title":"Electron cyclotron harmonic waves in Jovian magnetosphere as seen by Juno","authors":"J. Joseph, A. N. Jaynes, W. S. Kurth, J. D. Menietti, J. E. P. Connerney, S. J. Bolton","doi":"10.3389/fspas.2023.1274760","DOIUrl":"https://doi.org/10.3389/fspas.2023.1274760","url":null,"abstract":"Electron cyclotron harmonic (ECH) waves along with whistler mode waves are suggested to be responsible for causing the persistent diffuse aurora in Jupiter. In this work, for the first time we systematically analyze the ECH waves in the Jovian inner magnetosphere, which was surveyed by Juno during the later orbits (>25). We find that in the Jovian inner magnetosphere, ECH waves occur in two specific regions—one equatorial and the other off-equatorial, just outside the Io torus. Equatorial ECH waves have higher intensity compared to their off-equatorial counterpart. We also notice an overlap between the region of mid-latitude hot injections and the region of off-equatorial ECH wave occurrence. Finally, we show an event to describe the complex nature of ECH wave growth/damping varying with particle density structures of the injection region at mid-latitude.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"50 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Hydrogen atoms near the exobase are cold: independent observations do not support the hot exosphere concept 勘误:靠近外逸层的氢原子是冷的:独立观测不支持热的外逸层概念
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-07 DOI: 10.3389/fspas.2023.1320143
Dmytro Kotov, Oleksandr Bogomaz
{"title":"Corrigendum: Hydrogen atoms near the exobase are cold: independent observations do not support the hot exosphere concept","authors":"Dmytro Kotov, Oleksandr Bogomaz","doi":"10.3389/fspas.2023.1320143","DOIUrl":"https://doi.org/10.3389/fspas.2023.1320143","url":null,"abstract":"• please read through all the templates before choosing • pick the most relevant text template(s) from the following page and delete all others.• edit the text as necessary, ensuring that the original incorrect text is included for the record, please see the below. • please do not use any extra formatting when editing the templates, and only modify the red text unless absolutely necessary • submit to Frontiers following the instructions on this page.When the original text contained incorrect information, to preserve the scientific record, please include that text when editing the below templates. For example:There was a mistake in the Funding statement, an incorrect number was used. The correct number is \"2015C03Bd051.\". The publisher apologizes for this mistake.The original version of this article has been updated. In the published article, there was an error. [In the published article, there was a typo in the Text. The word \"hot\" was used incorrectly instead of a proper word \"cold\" as shown below. Despite the rest of phrase after the word indicate for the readers that the \"hot\" is incorrect, this typo may certainly confuse the readers].","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"217 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion kinetic effects linked to magnetic field discontinuities in the slow Alfvénic wind observed by Solar Orbiter in the inner heliosphere 由太阳轨道器在内日球层观测到的与慢alfv<s:1>风中磁场不连续有关的离子动力学效应
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-06 DOI: 10.3389/fspas.2023.1250219
Denise Perrone, Adriana Settino, Rossana De Marco, Raffaella D’Amicis, Silvia Perri
{"title":"Ion kinetic effects linked to magnetic field discontinuities in the slow Alfvénic wind observed by Solar Orbiter in the inner heliosphere","authors":"Denise Perrone, Adriana Settino, Rossana De Marco, Raffaella D’Amicis, Silvia Perri","doi":"10.3389/fspas.2023.1250219","DOIUrl":"https://doi.org/10.3389/fspas.2023.1250219","url":null,"abstract":"Slow solar wind, sharing magnetic and plasma properties typical of fast wind, the so-called slow Alfvénic wind, has been widely observed in the heliosphere. Here, we report an analysis of the turbulent properties of a slow Alfvénic stream observed by Solar Orbiter at 0.64 AU. This solar wind stream is characterized by well distinguishable regions, namely, a main portion, an intermediate region, and a rarefaction region. Each of those intervals have been studied separately, in order to enhance similarities and differences in their turbulence properties. Coherent structures naturally emerge over different time/spatial scales and their characteristics at ion scales have been investigated. The presence of these intermittent events have been found to be closely related to kinetic features in the ion (both proton and alpha particles) velocity distribution functions, suggesting a fundamental role in the kinetic physical processes that mediate the sub-ion turbulence cascade.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"1984 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress and prospects for research on Martian topographic features and typical landform identification 火星地形特征与典型地貌识别研究进展与展望
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-02 DOI: 10.3389/fspas.2023.1275516
Liu Danyang, Cheng Weiming
{"title":"Progress and prospects for research on Martian topographic features and typical landform identification","authors":"Liu Danyang, Cheng Weiming","doi":"10.3389/fspas.2023.1275516","DOIUrl":"https://doi.org/10.3389/fspas.2023.1275516","url":null,"abstract":"The study of Martian surface topography is important for understanding the geological evolution of Mars and revealing the spatial differentiation of the Martian landscape. Identifying typical landform units is a fundamental task when studying the origin and evolution of Mars and provides important information for landing on and exploring Mars, as well as estimating the age of the Martian surface and inferring the evolution of the Earth’s environment. In this paper, we first investigate Mars exploration, data acquisition and mapping, and the classification methods of Martian landforms. Then, the identification of several typical Martian landform types, such as aeolian landforms, fluvial landforms, and impact landforms, is shown in detail. Finally, the prospects of Mars data acquisition, landform mapping, and the construction and identification of the Martian landform classification system are presented. The construction of the Martian landform classification system and the identification of typical Martian landforms using deep learning are important development directions in planetary science.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"32 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of our understanding of coronal mass ejections 我们对日冕物质抛射理解的演变
3区 物理与天体物理
Frontiers in Astronomy and Space Sciences Pub Date : 2023-11-02 DOI: 10.3389/fspas.2023.1264226
Russell A. Howard, Angelos Vourlidas, Guillermo Stenborg
{"title":"The evolution of our understanding of coronal mass ejections","authors":"Russell A. Howard, Angelos Vourlidas, Guillermo Stenborg","doi":"10.3389/fspas.2023.1264226","DOIUrl":"https://doi.org/10.3389/fspas.2023.1264226","url":null,"abstract":"The unexpected observation of a sudden expulsion of mass through the solar corona in 1971 opened up a new field of interest in solar and stellar physics. The discovery came from a white-light coronagraph, which creates an artificial eclipse of the Sun, enabling the viewing of the faint glow from the corona. This observation was followed by many more observations and new missions. In the five decades since that discovery, there have been five generations of coronagraphs, each with improved performance, enabling continued understanding of the phenomena, which became known as Coronal Mass Ejection (CME) events. The conceptualization of the CME structure evolved from the elementary 2-dimensional loop to basically two fundamental types: a 3-dimensional magnetic flux rope and a non-magnetic eruption from pseudo-streamers. The former persists to 1 AU and beyond, whereas the latter dissipates by 15 R ⊙ . Historically, most of the studies have been devoted to understanding the CME large-scale structure and its associations, but this is changing. With the advent of the fourth and fifth coronagraph generations, more attention is being devoted to the their internal structure and initiation mechanisms. In this review, we describe the evolution of CME observations and their associations with other solar and heliospheric phenomena, with one of the more important correlations being its recognition as a driver of space-weather. We conclude with a brief overview of open questions and present some ideas for future observations.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"16 46","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信