Ion kinetic effects linked to magnetic field discontinuities in the slow Alfvénic wind observed by Solar Orbiter in the inner heliosphere

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Denise Perrone, Adriana Settino, Rossana De Marco, Raffaella D’Amicis, Silvia Perri
{"title":"Ion kinetic effects linked to magnetic field discontinuities in the slow Alfvénic wind observed by Solar Orbiter in the inner heliosphere","authors":"Denise Perrone, Adriana Settino, Rossana De Marco, Raffaella D’Amicis, Silvia Perri","doi":"10.3389/fspas.2023.1250219","DOIUrl":null,"url":null,"abstract":"Slow solar wind, sharing magnetic and plasma properties typical of fast wind, the so-called slow Alfvénic wind, has been widely observed in the heliosphere. Here, we report an analysis of the turbulent properties of a slow Alfvénic stream observed by Solar Orbiter at 0.64 AU. This solar wind stream is characterized by well distinguishable regions, namely, a main portion, an intermediate region, and a rarefaction region. Each of those intervals have been studied separately, in order to enhance similarities and differences in their turbulence properties. Coherent structures naturally emerge over different time/spatial scales and their characteristics at ion scales have been investigated. The presence of these intermittent events have been found to be closely related to kinetic features in the ion (both proton and alpha particles) velocity distribution functions, suggesting a fundamental role in the kinetic physical processes that mediate the sub-ion turbulence cascade.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"1984 3","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1250219","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Slow solar wind, sharing magnetic and plasma properties typical of fast wind, the so-called slow Alfvénic wind, has been widely observed in the heliosphere. Here, we report an analysis of the turbulent properties of a slow Alfvénic stream observed by Solar Orbiter at 0.64 AU. This solar wind stream is characterized by well distinguishable regions, namely, a main portion, an intermediate region, and a rarefaction region. Each of those intervals have been studied separately, in order to enhance similarities and differences in their turbulence properties. Coherent structures naturally emerge over different time/spatial scales and their characteristics at ion scales have been investigated. The presence of these intermittent events have been found to be closely related to kinetic features in the ion (both proton and alpha particles) velocity distribution functions, suggesting a fundamental role in the kinetic physical processes that mediate the sub-ion turbulence cascade.
由太阳轨道器在内日球层观测到的与慢alfv风中磁场不连续有关的离子动力学效应
缓慢的太阳风,具有快速风的磁性和等离子体特性,即所谓的慢阿尔夫萨奇风,在日球层被广泛观察到。在这里,我们报告了太阳轨道器在0.64 AU观测到的一个缓慢的alfv晶格流的湍流特性的分析。该太阳风流具有明显的区域特征,即主要区域、中间区域和稀薄区域。为了增强其湍流特性的相似性和差异性,对每一个区间都进行了单独研究。在不同的时间/空间尺度上自然出现相干结构,并研究了它们在离子尺度上的特征。这些间歇事件的存在已被发现与离子(质子和α粒子)速度分布函数的动力学特征密切相关,表明在介导亚离子湍流级联的动力学物理过程中起着基本作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Astronomy and Space Sciences
Frontiers in Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
3.40
自引率
13.30%
发文量
363
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信