Multidiscipline Modeling in Materials and Structures最新文献

筛选
英文 中文
Analytical modeling and optimal design of clamped sandwich beams with cellular cores subjected to shock loading 冲击荷载作用下蜂窝芯夹紧夹层梁的解析建模与优化设计
4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-09-26 DOI: 10.1108/mmms-12-2022-0278
Lang Li, Jiahui Li, Fan Zhang, Fusen Jia, Lei Li
{"title":"Analytical modeling and optimal design of clamped sandwich beams with cellular cores subjected to shock loading","authors":"Lang Li, Jiahui Li, Fan Zhang, Fusen Jia, Lei Li","doi":"10.1108/mmms-12-2022-0278","DOIUrl":"https://doi.org/10.1108/mmms-12-2022-0278","url":null,"abstract":"Purpose Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive analytical model for predicting the dynamic response of cellular-core sandwich structures subjected to shock loading and investigate their application in protective design. Design/methodology/approach First, an analytical model of a clamped sandwich beam for over-span shock loading was developed. In this model, the incident shock-wave reflection was considered, the clamped face sheets were simplified using two single-degree-of-freedom (SDOF) systems, the core was idealized using the rigid-perfectly-plastic-locking (RPPL) model in the thickness direction and simplified as an SDOF system in the span direction. The model was then evaluated using existing analytical models before being employed to design the sandwich-beam configurations for two typical engineering applications. Findings The model effectively predicted the dynamic response of sandwich panels, especially when the shock-loading pulse shape was considered. The optimal compressive cellular-core strength increased with increasing peak pressure and shock-loading impulse. Neglecting the core tensile strength could result in an overestimation of the optimal compressive cellular-core strength. Originality/value A new model was proposed and employed to optimally design clamped cellular-core sandwich-beam configurations subjected to shock loading.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134885290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical and experimental study on microcrack of mortar by a self-healing agent of bacteria adsorbed by expanded perlite 膨胀珍珠岩吸附细菌自愈剂对砂浆微裂纹的统计与实验研究
4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-09-19 DOI: 10.1108/mmms-12-2022-0285
Hong-Feng Li, Jun Sun, Xiao-Yong Wang, Lei-Lei Xing, Guang-Zhu Zhang
{"title":"Statistical and experimental study on microcrack of mortar by a self-healing agent of bacteria adsorbed by expanded perlite","authors":"Hong-Feng Li, Jun Sun, Xiao-Yong Wang, Lei-Lei Xing, Guang-Zhu Zhang","doi":"10.1108/mmms-12-2022-0285","DOIUrl":"https://doi.org/10.1108/mmms-12-2022-0285","url":null,"abstract":"Purpose The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar cracks and reduce the water absorption of mortar after healing. Design/methodology/approach Bacillus pseudofirmus spores were immobilized with EP particles as self-healing agents. The effects of adding self-healing agents on the compressive strength of mortar specimens were observed. The ability of mortar specimens to heal cracks was evaluated using crack microscopic observation and water absorption experiments. The filler at the cracks was microscopically analyzed by scanning electron microscope and X-ray diffraction experiments. Findings First, the internal curing effect of EP promotes the hydration of cement in mortar, which generates more amount and denser crystal structure of Ca(OH)2 at mortar cracks and improves the self-healing ability of mortar. Second, the self-healing ability of mortar improves with the increase of self-healing agent admixture. Adding a self-healing agent of high admixture makes the planar undulation of calcite crystal accumulation at mortar cracks more significant. Finally, the initial crack widths that can be completely healed by adding EP and self-healing agents to the mortar are 200 µm and 600 µm, respectively. Originality/value The innovation points of this study are as follows. (1) The mechanism of the internal curing effect of EP particles on the self-healing ability of mortar cracks was revealed by crack microscopic observation tests and microscopic experiments. (2) The effect of different self-healing agent amounts on the self-healing ability of mortar cracks has been studied. (3) The effects of EP particles and self-healing agents on healing different initial widths were elucidated by crack microscopic observation tests. Graphical abstract","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-performance optimization for AWJ drilling process in cutting of ceramic tile: BBD with EOBL-GOA algorithm 瓷砖切割AWJ钻孔工艺多性能优化:基于EOBL-GOA算法的BBD
4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-09-13 DOI: 10.1108/mmms-11-2022-0254
A. Tamilarasan, A. Renugambal, K. Shunmugesh
{"title":"Multi-performance optimization for AWJ drilling process in cutting of ceramic tile: BBD with EOBL-GOA algorithm","authors":"A. Tamilarasan, A. Renugambal, K. Shunmugesh","doi":"10.1108/mmms-11-2022-0254","DOIUrl":"https://doi.org/10.1108/mmms-11-2022-0254","url":null,"abstract":"Purpose The goal of this study is to determine the values of the process parameters that should be used during the machining of ceramic tile using the abrasive water jet (AWJ) process in order to achieve the lowest possible values for surface roughness and kerf taper angle. Design/methodology/approach In the present work, ceramic tile is processed by the AWJ process and experimental data were recorded using the RSM approach based Box–Behnken design matrix. The input process factors were water jet pressure, jet traverse speed, abrasive flow rate and standoff distance, to determine the surface roughness and kerf taper angle. ANOVA was used to check the adequacy of model and significance of process parameters. Further, the elite opposition-based learning grasshopper optimization (EOBL-GOA) algorithm was implemented to identify the simultaneous optimization of multiple responses of surface roughness and kerf taper angle in AWJ. Findings The suggested EOBL-GOA algorithm is suitable for AWJ of ceramic tile, as evidenced by the error rate of ±2 percent between experimental and predicted solutions. The surfaces were evaluated with an SEM to assess the quality of the surface generated with the optimal settings. As compared with initial setting of the SEM image, it was noticed that the bottom cut surface was nearly smooth, with less cracks, striations and pits in the improved optimal results of the SEM image. The results of the analysis can be used to control machining parameters and increase the accuracy of AWJed components. Originality/value The findings of this study present an innovative method for assessing the characteristics of the nontraditional machining processes that are most suited for use in industrial and commercial applications.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134990998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on creep behaviors of nickel-based single-crystal alloys considering microstructure evolution 考虑微观组织演变的镍基单晶合金蠕变行为研究
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-09-08 DOI: 10.1108/mmms-12-2022-0271
Xing Ai, Shuaishuai Wang, Fenghua Luo, H. Pei, Zhenwei Li
{"title":"Study on creep behaviors of nickel-based single-crystal alloys considering microstructure evolution","authors":"Xing Ai, Shuaishuai Wang, Fenghua Luo, H. Pei, Zhenwei Li","doi":"10.1108/mmms-12-2022-0271","DOIUrl":"https://doi.org/10.1108/mmms-12-2022-0271","url":null,"abstract":"Purpose The purpose of this study is to describe the mechanism of single-crystal high-temperature creep deformation, predict the creep life more accurately and study the creep constitutive and lifetime models with microstructure evolution.Design/methodology/approachThe mechanical properties of nickel-based single-crystal superalloy are closely related to the γ' phase. Creep tests under four different temperature and stress conditions were carried out. The relationship between creep temperature, stress and life is fitted by numerical method, and the creep activation energy is obtained. The creep fracture surface, morphology and evolution of strengthening phase (γ') and matrix phase (γ) during different creep periods were observed by scanning electron microscope. With the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by transmission electron microscope (TEM).FindingsWith the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by TEM. Dislocations are mainly concentrated in the γ channel phase, especially at high temperature and low stress.Originality/valueA creep constitutive model based on the evolution of γ' phase size and γ channel width was proposed. Compared with the experimental results, the predicted creep life is within 1.4 times error dispersion band.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47034751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibration response analysis of a two-stage vibration isolation system for large airborne equipment 大型机载设备两级隔振系统的振动响应分析
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-08-29 DOI: 10.1108/mmms-04-2023-0142
Hongyan Zhu, Pengzhen Lv, Xiaochong Wu, Yuansheng Wang, Wei Liu, Huagang Lin, Zhufeng Yue
{"title":"Vibration response analysis of a two-stage vibration isolation system for large airborne equipment","authors":"Hongyan Zhu, Pengzhen Lv, Xiaochong Wu, Yuansheng Wang, Wei Liu, Huagang Lin, Zhufeng Yue","doi":"10.1108/mmms-04-2023-0142","DOIUrl":"https://doi.org/10.1108/mmms-04-2023-0142","url":null,"abstract":"PurposeThis paper aims to propose a two-stage vibration isolation system for large airborne equipment to isolate aircraft vibration load.Design/methodology/approachFirst, the vibration isolation law of the discrete model of large airborne equipment under different damping ratios, stiffness ratios and mass ratios is analyzed, which guides the establishment of a three-dimensional solid model of large airborne equipment. Subsequently, the vibration isolation transfer efficiency is analyzed based on the three-dimensional model of the airborne equipment, and the angular and linear vibration responses of the two-stage vibration isolation system under different frequencies are studied.FindingsFinally, studies have shown that the steady-state angular vibration at the non-resonant frequency changes little. In contrast, the maximum angular vibration at the resonance peak reaches 0.0033 rad, at least 20 times the response at the non-resonant frequency. The linear vibration at the resonant frequency is at least 2.14 times the response at the non-resonant frequency. Obviously, the amplification factor of linear vibration is less than that of angular vibration, and angular vibration has the most significant effect on the internal vibration of airborne equipment.Originality/valueThe two-stage vibration isolation equipment designed in this paper has a positive guiding significance for the vibration isolation design of large airborne equipment.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48320285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite coating thickness of Prandtl fluid in non-isothermal reverse roll coating process 普朗特流体在非等温反向辊涂过程中的有限涂层厚度
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-08-29 DOI: 10.1108/mmms-02-2023-0061
Z. Abbas, S. Khaliq, Sana Usman, M. Rafiq
{"title":"Finite coating thickness of Prandtl fluid in non-isothermal reverse roll coating process","authors":"Z. Abbas, S. Khaliq, Sana Usman, M. Rafiq","doi":"10.1108/mmms-02-2023-0061","DOIUrl":"https://doi.org/10.1108/mmms-02-2023-0061","url":null,"abstract":"PurposeThe coating process is broadly employed in the manufacturing of wallpapers, adhesive tapes, wrapping, protection of fabrics and metals, X-ray and photographic films, beautification, books and magazines, film foils, magnetic records, coated paper, etc.Design/methodology/approachIn this study, an incompressible flow of non-Newtonian fluid is modeled to inspect the rheological behavior of finite coating thickness in the reverse roll coating process. With the assistance of lubrication approximation theory (LAT), the dimensionless form of governing expressions is simplified. Exact solutions for distributions for velocity, flow rate, temperature and pressure gradient attained utilizing perturbation technique and their variation is presented as well as discussed in graphs. Meanwhile, some important factors from an engineering perspective including coating thickness and transition point were calculated mathematically and are displayed in a tabular manner. Also, streamlines are drawn to observe the flow pattern.FindingsPrandtl fluid parameters provide a controlling factor to regulate the flow rate, velocity, coating thickness, and pressure gradient leading to an efficient coating process. Moreover, the Brinkman number and Prandtl fluid parameters significantly improve the temperature distribution.Originality/valueIn the literature, this study fills a gap in the theoretical prediction of coating thickness rheologically influenced by Prandtl fluid in reverse roll coating process.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46783788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sound absorption performance of composite structures from a kind of lightweight ceramic foam with perforated plate 一种轻质多孔板泡沫陶瓷复合结构吸声性能研究
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-08-28 DOI: 10.1108/mmms-05-2023-0155
P.S. Liu, S. Song, J.X. Sun
{"title":"Sound absorption performance of composite structures from a kind of lightweight ceramic foam with perforated plate","authors":"P.S. Liu, S. Song, J.X. Sun","doi":"10.1108/mmms-05-2023-0155","DOIUrl":"https://doi.org/10.1108/mmms-05-2023-0155","url":null,"abstract":"PurposeThe purpose of this paper is mainly to know: (1) the sound absorption coefficient of porous composite structures constituted by a new kind of lightweight ceramic foam and perforated plate; (2) the availability of an equivalent porous material model, recently proposed by the present author, to these composite structures in sound absorption.Design/methodology/approachA kind of lightweight ceramic foam with bulk density of 0.38–0.56 g·cm-3 was produced by means of molding, drying and sintering. The effect of stainless steel perforated plate on sound absorption performance of the ceramic foam was investigated by means of JTZB absorption tester.FindingsThe results indicate that the sound absorption performance could be obviously changed by adding the stainless steel perforated plate in front of the porous samples and the air gap in back of the porous samples. Adding the perforated plate to the porous sample with a relatively large pore size, the sound absorption performance could be evidently improved for the composite structure. When the air gap is added to the composite structure, the first absorption peak shifts to the lower frequency, and the sound absorption coefficient could increase in the low frequency range.Originality/valueBased on the equivalent porous material model and the “perforated plate with air gap” model, the sound absorption performance of the composite structures can be simulated conveniently to a great extent by using Johnson-Champoux-Allard model.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43336737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Site effect influence on the seismic vulnerability of unreinforced masonry buildings in low to moderate seismic urban areas in Algeria 场地效应对阿尔及利亚中低地震城市地区无筋砌体建筑地震易损性的影响
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-08-15 DOI: 10.1108/mmms-03-2023-0095
A. Athmani, Naida Ademović
{"title":"Site effect influence on the seismic vulnerability of unreinforced masonry buildings in low to moderate seismic urban areas in Algeria","authors":"A. Athmani, Naida Ademović","doi":"10.1108/mmms-03-2023-0095","DOIUrl":"https://doi.org/10.1108/mmms-03-2023-0095","url":null,"abstract":"PurposeThis paper aims to develop preliminary damage scenarios for unreinforced masonry buildings located in low to moderate seismic hazard areas in Algeria, taking into account the specific site effects.Design/methodology/approachThree soil types were considered in this analysis according to the definition of the Algerian seismic code (RPA99/2003). Peak ground acceleration values were assigned to each soil type issued from a probabilistic seismic hazard analysis (PSHA). To highlight the effect of soil conditions on the seismic vulnerability analysis of masonry buildings, a site vulnerability increment is carried out, and the macroseismic Risk-UE method has been adopted and applied by developing two main seismic scenarios according to both return periods of the PSHA, 100 and 475 years, respectively.FindingsBased on the preliminary results of rock site condition, it can be outlined that the significant damage obtained for different earthquake scenarios discovered a substantial worldwide seismic risk to the building stock of the study area. Once the site effect is integrated into the analysis, more high values of vulnerability indexes and expected damages are obtained. Moreover, it can be concluded that soft soil (S3) is a little bit more influential than stiff soil (S2) on the final vulnerability index compared to (S1). However, the difference between the soil effect S2 and S3 on the vulnerability index can be neglected.Research limitations/implicationsResearchers are encouraged to test the mechanical approaches for more detailed outcomes of a specific building analysis.Practical implicationsThis research proves to the Algerian decision-makers that due to the site effects and the vulnerability of the masonry buildings, an urgent intervention program is required even for existing buildings located in low to moderate seismic hazard areas.Originality/valueSeveral seismic vulnerability types of research have been conducted in Algeria for the unreinforced masonry buildings in moderate to high seismic areas in which generally the soil effect is neglected. In this context, this research paper proves that due to the site effects and the vulnerability of the masonry buildings, special attention is required even for existing buildings located in low to moderate seismic hazard areas. With this conclusion, the requirement of taking into account the soli effect in the high seismic areas is even more pronounced and should be conducted.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44346964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability analysis of time-dependent problems based on ensemble learning of surrogate models 基于代理模型集成学习的含时问题的可靠性分析
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-08-15 DOI: 10.1108/mmms-04-2023-0132
C. Zhou, Zheng Wei, Huajin Lei, Fangyun Ma, Wei Li
{"title":"Reliability analysis of time-dependent problems based on ensemble learning of surrogate models","authors":"C. Zhou, Zheng Wei, Huajin Lei, Fangyun Ma, Wei Li","doi":"10.1108/mmms-04-2023-0132","DOIUrl":"https://doi.org/10.1108/mmms-04-2023-0132","url":null,"abstract":"PurposeSurrogate models are extensively used to substitute real models which are expensive to evaluate in the time-dependent reliability analysis. Normally, different surrogate models have different scopes of application. However, information is often insufficient for analysts to select the most appropriate surrogate model for a specific application. Thus, the result precited by individual surrogate model tends to be suboptimal or even inaccurate. Ensemble model can effectively deal with the above concern. This work aims to study the application of ensemble model for reliability analysis of time-independent problems.Design/methodology/approachIn this work, a method of reliability analysis for time-dependent problems based on ensemble learning of surrogate models is developed. The ensemble of surrogate models includes Kriging, radial basis function, and support vector machine. The prediction is approximated by the weighted average model. The ensemble learning of surrogate models is updated by finding and adding the sample points with large prediction errors throughout the entire procedure.FindingsThe effectiveness of the proposed method is verified by several examples. The results show that the ensemble of surrogate models can effectively propagate the uncertainty of time-varying problems, and evaluate the reliability with high prediction accuracy and computational efficiency.Originality/valueThis work proposes an adaptive learning framework for the uncertainty propagation of time-dependent problems based on the ensemble of surrogate models. Compared with individual surrogate models, the ensemble model not only saves the effort of selecting an appropriate surrogate model especially when the knowledge of unknown problem is lacking, but also improves the prediction accuracy and computational efficiency.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48301570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical solution and free vibration analysis for beams with step changes in stiffness 刚度阶跃变化梁的解析解和自由振动分析
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2023-07-31 DOI: 10.1108/mmms-04-2023-0138
Lei Li, Siqi An
{"title":"Analytical solution and free vibration analysis for beams with step changes in stiffness","authors":"Lei Li, Siqi An","doi":"10.1108/mmms-04-2023-0138","DOIUrl":"https://doi.org/10.1108/mmms-04-2023-0138","url":null,"abstract":"PurposeThis paper aims to investigate analytical solutions of natural frequencies and mode shapes of Euler-Bernoulli beams with step changes in the stiffness.Design/methodology/approachIn this work, analytical solutions for a beam with a single discontinuity was performed. Subsequently, based on an effective matrix formulation, the closed-form expressions of the single discontinuity beam could be conveniently extended to stepped beams with multiple stiffness discontinuities.FindingsThe results of the study show that the natural frequency of the beam can be adjusted by the local stiffness variation, and step location plays a significant role in free vibration responses.Originality/valueThe effects of the stiffness of the segment and step location on the natural frequencies of the stepped beams under different boundary conditions were examined using the proposed analytical scheme. This study provides insights into the design of variable-stiffness beam structures with the capability to adjust natural frequencies.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43168523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信