Multidiscipline Modeling in Materials and Structures最新文献

筛选
英文 中文
Thermal management of square light emitting diode arrays: modeling and parametric analysis 方形发光二极管阵列的热管理:建模和参数分析
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-02-21 DOI: 10.1108/mmms-09-2023-0311
M. B. Ben Hamida
{"title":"Thermal management of square light emitting diode arrays: modeling and parametric analysis","authors":"M. B. Ben Hamida","doi":"10.1108/mmms-09-2023-0311","DOIUrl":"https://doi.org/10.1108/mmms-09-2023-0311","url":null,"abstract":"PurposeThis study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.Design/methodology/approachTo determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.FindingsAmong 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.Originality/valueThe study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140443789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of variable thermal conductivity and diffusion coefficient on non-Newtonian Prandtl model with modified heat and mass fluxes 在具有修正热通量和质量通量的非牛顿普朗特模型上利用可变导热系数和扩散系数
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-02-19 DOI: 10.1108/mmms-10-2023-0328
Muhammad Sohail, Syed Tehseen Abbas
{"title":"Utilization of variable thermal conductivity and diffusion coefficient on non-Newtonian Prandtl model with modified heat and mass fluxes","authors":"Muhammad Sohail, Syed Tehseen Abbas","doi":"10.1108/mmms-10-2023-0328","DOIUrl":"https://doi.org/10.1108/mmms-10-2023-0328","url":null,"abstract":"PurposeThis study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable sheet, flow is produced. Heat generation effect, thermal radiation, variable thermal conductivity, variable diffusion coefficient and Cattaneo–Christov double diffusion models are used to evaluate thermal and concentration diffusions.Design/methodology/approachThe governing partial differential equations (PDEs) have been made simpler using a boundary layer method. Strong nonlinear ordinary differential equations (ODEs) relate to appropriate non-dimensional similarity variables. The optimal homotopy analysis technique is used to develop solution.FindingsGraphs analyze the impact of many relevant factors on temperature and concentration. The physical parameters, such as mass and heat transfer rates at the wall and surface drag coefficients, are also displayed and explained.Originality/valueThe reported work discusses the contribution of generalized flux models to note their impact on heat and mass transport.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139959110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface 双曲切线混合对流纳米材料在垂直倾斜表面作用下的动力学熵行为与活化能的关系
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-02-16 DOI: 10.1108/mmms-10-2023-0343
Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt
{"title":"Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface","authors":"Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt","doi":"10.1108/mmms-10-2023-0343","DOIUrl":"https://doi.org/10.1108/mmms-10-2023-0343","url":null,"abstract":"PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface 双曲切线混合对流纳米材料在垂直倾斜表面作用下的动力学熵行为与活化能的关系
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-02-16 DOI: 10.1108/mmms-10-2023-0343
Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt
{"title":"Entropic behavior with activation energy in the dynamics of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface","authors":"Muhammad Faisal, F. Mabood, I. Badruddin, Muhammad Aiyaz, Faisal Mehmood Butt","doi":"10.1108/mmms-10-2023-0343","DOIUrl":"https://doi.org/10.1108/mmms-10-2023-0343","url":null,"abstract":"PurposeNonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.Design/methodology/approachSuitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.FindingsIt is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.Originality/valueTo the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139833424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size-dependent vibration analysis of the simply supported functionally graded porous material Al-Al2O3 rectangle microplates based on the modified couple stress theory with innovative consideration of neutral plane and scale distribution 基于修正耦合应力理论并创新性地考虑了中性面和尺度分布的简支功能分级多孔材料 Al-Al2O3 矩形微板的尺寸相关振动分析
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-01-30 DOI: 10.1108/mmms-09-2023-0314
Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong, Sheng Liu
{"title":"Size-dependent vibration analysis of the simply supported functionally graded porous material Al-Al2O3 rectangle microplates based on the modified couple stress theory with innovative consideration of neutral plane and scale distribution","authors":"Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong, Sheng Liu","doi":"10.1108/mmms-09-2023-0314","DOIUrl":"https://doi.org/10.1108/mmms-09-2023-0314","url":null,"abstract":"PurposeHoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.Design/methodology/approachThe authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.FindingsThe authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.Originality/valueOriginally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140484756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strength and microstructural analysis of geopolymer prepared with coal-based synthetic natural gas slag 用煤基合成天然气渣制备的土工聚合物的强度和微观结构分析
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-01-22 DOI: 10.1108/mmms-08-2023-0282
Peng Yin, Tao Liu, Baofeng Pan, Ningbo Liu
{"title":"Strength and microstructural analysis of geopolymer prepared with coal-based synthetic natural gas slag","authors":"Peng Yin, Tao Liu, Baofeng Pan, Ningbo Liu","doi":"10.1108/mmms-08-2023-0282","DOIUrl":"https://doi.org/10.1108/mmms-08-2023-0282","url":null,"abstract":"PurposeThe coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.Design/methodology/approachThe formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.FindingsThe results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.Originality/valueMoreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139607401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature-rich electronic properties of three-dimensional ternary compound: Li7P3S11 三维三元化合物的丰富电子特性:Li7P3S11
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-01-12 DOI: 10.1108/mmms-08-2023-0258
Hsin-Yi Liu, Jhao-Ying Wu
{"title":"Feature-rich electronic properties of three-dimensional ternary compound: Li7P3S11","authors":"Hsin-Yi Liu, Jhao-Ying Wu","doi":"10.1108/mmms-08-2023-0258","DOIUrl":"https://doi.org/10.1108/mmms-08-2023-0258","url":null,"abstract":"PurposeThe theoretical findings serve as a foundation for further research into understanding sulfide-based solid-state electrolytes, ultimately advancing the progress of all-solid-state batteries.Design/methodology/approachThe electronic properties of Li7P3S11 are thoroughly explored through first-principles calculations.FindingsThis investigation encompasses the intricate atom-dominated valence and conduction bands, spatial charge density distribution and the breakdown of atom and orbital contributions to van Hove singularities. Additionally, the compound’s wide and discrete energy spectra reflect the substantial variations in bond lengths and its highly anisotropic geometric structure. The complex and nonuniform chemical environment indicates the presence of intricate hopping integrals.Originality/valueThis study provides valuable insights into the critical multiorbital hybridizations occurring in the Li-S and P-S chemical bonds. To validate the theoretical predictions, experimental techniques can be employed. By combining theoretical predictions with experimental data, a comprehensive understanding of the geometric and electronic characteristics of Li7P3S11 can be achieved.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139437602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of width-to-depth and effective length-to-depth ratio on shear strength of reinforced concrete slender beams without shear reinforcement: comparative analysis 宽度深度比和有效长度深度比对无抗剪加固钢筋混凝土细长梁抗剪强度的影响:对比分析
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-01-05 DOI: 10.1108/mmms-07-2023-0236
Seyfe Nigussie Adamu, T. W. Aure, T. A. Mohammed
{"title":"Influence of width-to-depth and effective length-to-depth ratio on shear strength of reinforced concrete slender beams without shear reinforcement: comparative analysis","authors":"Seyfe Nigussie Adamu, T. W. Aure, T. A. Mohammed","doi":"10.1108/mmms-07-2023-0236","DOIUrl":"https://doi.org/10.1108/mmms-07-2023-0236","url":null,"abstract":"PurposeFrom the factors that affect shear strength of reinforced concrete (RC) beams, the study examines the effect of controversial parameters, width-to-depth (b/d) and effective length-to-depth (leff/d) ratio on shear strength of RC slender beams.Design/methodology/approachThe researchers utilized a database of 676 experimental test results from ACI-DAfStb database, Conducted regression analysis to examine relationship between b/d and leff/d ratios and shear strength, compare and analyze sensitivity to changes in b/d and leff/d ratios for the selected 12 shear models for RC beams.FindingsIncreasing b/d ratio enhanced shear strength until b/d ˜ 3, but further increases had limited impact and increasing leff/d ratio resulted in decreased shear strength. From comparative analysis, the models provided by various design standards were found to be safe, with EC-2 and JSCE models being conservative. From considered research models, Campione and Arslan models were conservative, while Kim and White model were observed to be unsafe. Sensitivity analysis indicated ACI318-19, JSCE, CEB-FIP-90 and Arslan models were sensitive to changes in b/d and leff/d ratios. National code models generally captured shear strength characteristics well. Certain models suggested a constant/decreasing b/d effect despite observed shear strength enhancement. Most models indicated improved shear strength with an increasing leff/d ratio, contrary to experimental findings while TS500 and Hwang models aligned with experimental results.Research limitations/implicationsThe study's limitations include the dependence on the available database, which may not encompass all possible experimental scenarios. Further research should aim to expand the database and investigate additional parameters that may influence shear strength in RC beams.Practical implicationsThe findings of this study have practical implications for the design and analysis of RC beams by suggesting that the width-to-depth and length-to-depth ratios should be carefully considered to optimize shear strength. The identified models can assist engineers in selecting appropriate shear strength prediction models based on specific design scenarios.Social implicationsThe study contributes to the advancement of knowledge in the field of reinforced concrete beam design, which has implications for the safety and reliability of structural systems. By understanding the factors influencing shear strength, engineers can design more efficient and robust structures, ensuring the safety of buildings and infrastructure.Originality/valueThis study provides valuable insights into the influence of the width-to-depth and effective length-to-depth ratios on shear strength in reinforced concrete beams. It contributes to the understanding of these factors and their impact on shear strength, addressing the lack of consensus among researchers. The comparative analysis of shear models and the sensitivity analyses add value by identifying the models","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139382196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: experimental investigation using Taguchi method 优化通过 FDM 制造的软气动抓手的表面粗糙度:使用田口方法进行实验研究
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-01-04 DOI: 10.1108/mmms-09-2023-0313
Muhammet Uludag, O. Ulkir
{"title":"Optimizing surface roughness in soft pneumatic gripper fabricated via FDM: experimental investigation using Taguchi method","authors":"Muhammet Uludag, O. Ulkir","doi":"10.1108/mmms-09-2023-0313","DOIUrl":"https://doi.org/10.1108/mmms-09-2023-0313","url":null,"abstract":"Purpose In this study, experimental studies were carried out using different process parameters of the soft pneumatic gripper (SPG) fabricated by the fused deposition modeling method. In the experimental studies, the surface quality of the gripper was examined by determining four different levels and factors. The experiment was designed to estimate the surface roughness of the SPG.Design/methodology/approach The methodology consists of an experimental phase in which the SPG is fabricated and the surface roughness is measured. Thermoplastic polyurethane (TPU) flex filament material was used in the fabrication of SPG. The control factors used in the Taguchi L16 vertical array experimental design and their level values were determined. Analysis of variance (ANOVA) was performed to observe the effect of printing parameters on the surface quality. Finally, regression analysis was applied to mathematically model the surface roughness values obtained from the experimental measurements.Findings Based on the Taguchi signal-to-noise ratio and ANOVA, layer height is the most influential parameter for surface roughness. The best surface quality value was obtained with a surface roughness value of 18.752 µm using the combination of 100 µm layer height, 2 mm wall thickness, 200 °C nozzle temperature and 120 mm/s printing speed. The developed model predicted the surface roughness of SPG with 95% confidence intervals.Originality/value It is essential to examine the surface quality of parts fabricated in additive manufacturing using different variables. In the literature, surface roughness has been examined using different factors and levels. However, the surface roughness of a soft gripper fabricated with TPU material has not been examined previously. The surface quality of parts fabricated using flexible materials is very important.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A numerical study on thermal deformation of through silicon via with electroplating defect 带有电镀缺陷的硅通孔热变形数值研究
IF 2 4区 材料科学
Multidiscipline Modeling in Materials and Structures Pub Date : 2024-01-02 DOI: 10.1108/mmms-04-2023-0141
Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu
{"title":"A numerical study on thermal deformation of through silicon via with electroplating defect","authors":"Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu","doi":"10.1108/mmms-04-2023-0141","DOIUrl":"https://doi.org/10.1108/mmms-04-2023-0141","url":null,"abstract":"PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信