{"title":"冲击荷载作用下蜂窝芯夹紧夹层梁的解析建模与优化设计","authors":"Lang Li, Jiahui Li, Fan Zhang, Fusen Jia, Lei Li","doi":"10.1108/mmms-12-2022-0278","DOIUrl":null,"url":null,"abstract":"Purpose Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive analytical model for predicting the dynamic response of cellular-core sandwich structures subjected to shock loading and investigate their application in protective design. Design/methodology/approach First, an analytical model of a clamped sandwich beam for over-span shock loading was developed. In this model, the incident shock-wave reflection was considered, the clamped face sheets were simplified using two single-degree-of-freedom (SDOF) systems, the core was idealized using the rigid-perfectly-plastic-locking (RPPL) model in the thickness direction and simplified as an SDOF system in the span direction. The model was then evaluated using existing analytical models before being employed to design the sandwich-beam configurations for two typical engineering applications. Findings The model effectively predicted the dynamic response of sandwich panels, especially when the shock-loading pulse shape was considered. The optimal compressive cellular-core strength increased with increasing peak pressure and shock-loading impulse. Neglecting the core tensile strength could result in an overestimation of the optimal compressive cellular-core strength. Originality/value A new model was proposed and employed to optimally design clamped cellular-core sandwich-beam configurations subjected to shock loading.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":"5 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical modeling and optimal design of clamped sandwich beams with cellular cores subjected to shock loading\",\"authors\":\"Lang Li, Jiahui Li, Fan Zhang, Fusen Jia, Lei Li\",\"doi\":\"10.1108/mmms-12-2022-0278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive analytical model for predicting the dynamic response of cellular-core sandwich structures subjected to shock loading and investigate their application in protective design. Design/methodology/approach First, an analytical model of a clamped sandwich beam for over-span shock loading was developed. In this model, the incident shock-wave reflection was considered, the clamped face sheets were simplified using two single-degree-of-freedom (SDOF) systems, the core was idealized using the rigid-perfectly-plastic-locking (RPPL) model in the thickness direction and simplified as an SDOF system in the span direction. The model was then evaluated using existing analytical models before being employed to design the sandwich-beam configurations for two typical engineering applications. Findings The model effectively predicted the dynamic response of sandwich panels, especially when the shock-loading pulse shape was considered. The optimal compressive cellular-core strength increased with increasing peak pressure and shock-loading impulse. Neglecting the core tensile strength could result in an overestimation of the optimal compressive cellular-core strength. Originality/value A new model was proposed and employed to optimally design clamped cellular-core sandwich-beam configurations subjected to shock loading.\",\"PeriodicalId\":46760,\"journal\":{\"name\":\"Multidiscipline Modeling in Materials and Structures\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidiscipline Modeling in Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/mmms-12-2022-0278\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/mmms-12-2022-0278","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytical modeling and optimal design of clamped sandwich beams with cellular cores subjected to shock loading
Purpose Sandwich structures with well-designed cellular cores exhibit superior shock resistance compared to monolithic structures of equal mass. This study aims to develop a comprehensive analytical model for predicting the dynamic response of cellular-core sandwich structures subjected to shock loading and investigate their application in protective design. Design/methodology/approach First, an analytical model of a clamped sandwich beam for over-span shock loading was developed. In this model, the incident shock-wave reflection was considered, the clamped face sheets were simplified using two single-degree-of-freedom (SDOF) systems, the core was idealized using the rigid-perfectly-plastic-locking (RPPL) model in the thickness direction and simplified as an SDOF system in the span direction. The model was then evaluated using existing analytical models before being employed to design the sandwich-beam configurations for two typical engineering applications. Findings The model effectively predicted the dynamic response of sandwich panels, especially when the shock-loading pulse shape was considered. The optimal compressive cellular-core strength increased with increasing peak pressure and shock-loading impulse. Neglecting the core tensile strength could result in an overestimation of the optimal compressive cellular-core strength. Originality/value A new model was proposed and employed to optimally design clamped cellular-core sandwich-beam configurations subjected to shock loading.