{"title":"Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain<sup>*†</sup>","authors":"Sean L Simpson, F DuBois Bowman, Paul J Laurienti","doi":"10.1214/13-SS103","DOIUrl":"https://doi.org/10.1214/13-SS103","url":null,"abstract":"<p><p>Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function.</p>","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"7 ","pages":"1-36"},"PeriodicalIF":3.3,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/13-SS103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32742228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction in several conventional contexts","authors":"B. Clarke, J. Clarke","doi":"10.1214/12-SS100","DOIUrl":"https://doi.org/10.1214/12-SS100","url":null,"abstract":"We review predictive techniques from several traditional branches of statistics. Starting with prediction based on the normal model and on the empirical distribution function, we proceed to techniques for various forms of regression and classification. Then, we turn to time series, longitudinal data, and survival analysis. Our focus throughout is on the mechanics of prediction more than on the properties of predictors.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"1 1","pages":"1-73"},"PeriodicalIF":3.3,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89622787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical inference for dynamical systems: A review","authors":"K. Mcgoff, S. Mukherjee, N. Pillai","doi":"10.1214/15-SS111","DOIUrl":"https://doi.org/10.1214/15-SS111","url":null,"abstract":"The topic of statistical inference for dynamical systems has been studied widely across several fields. In this survey we focus on methods related to parameter estimation for nonlinear dynamical systems. Our objective is to place results across distinct disciplines in a common setting and highlight opportunities for further research.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"9 1","pages":"209-252"},"PeriodicalIF":3.3,"publicationDate":"2012-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85426584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A survey of Bayesian predictive methods for model assessment, selection and comparison","authors":"Aki Vehtari, Janne Ojanen","doi":"10.1214/12-SS102","DOIUrl":"https://doi.org/10.1214/12-SS102","url":null,"abstract":"To date, several methods exist in the statistical literature for model assessment, which purport themselves specifically as Bayesian predic- tive methods. The decision theoretic assumptions on which these methods are based are not always clearly stated in the original articles, however. The aim of this survey is to provide a unified review of Bayesian predictive model assessment and selection methods, and of methods closely related to them. We review the various assumptions that are made in this context and discuss the connections between different approaches, with an emphasis on how each method approximates the expected utility of using a Bayesian model for the purpose of predicting future data.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"4 1","pages":"142-228"},"PeriodicalIF":3.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78109301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review of survival trees","authors":"Imad Bou-Hamad, Denis Larocque, H. Ben-Ameur","doi":"10.1214/09-SS047","DOIUrl":"https://doi.org/10.1214/09-SS047","url":null,"abstract":"This paper presents a non–technical account of the developments in tree–based methods for the analysis of survival data with censoring. This review describes the initial developments, which mainly extended the existing basic tree methodologies to censored data as well as to more recent work. We also cover more complex models, more specialized methods, and more specific problems such as multivariate data, the use of time–varying covariates, discrete–scale survival data, and ensemble methods applied to survival trees. A data example is used to illustrate some methods that are implemented in R.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"81 2 1","pages":"44-71"},"PeriodicalIF":3.3,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88009195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curse of dimensionality and related issues in nonparametric functional regression","authors":"G. Geenens","doi":"10.1214/09-SS049","DOIUrl":"https://doi.org/10.1214/09-SS049","url":null,"abstract":"Recently, some nonparametric regression ideas have been extended to the case of functional regression. Within that framework, the main concern arises from the infinite dimensional nature of the explanatory objects. Specifically, in the classical multivariate regression context, it is well-known that any nonparametric method is affected by the socalled “curse of dimensionality”, caused by the sparsity of data in highdimensional spaces, resulting in a decrease in fastest achievable rates of convergence of regression function estimators toward their target curve as the dimension of the regressor vector increases. Therefore, it is not surprising to find dramatically bad theoretical properties for the nonparametric functional regression estimators, leading many authors to condemn the methodology. Nevertheless, a closer look at the meaning of the functional data under study and on the conclusions that the statistician would like to draw from it allows to consider the problem from another point-of-view, and to justify the use of slightly modified estimators. In most cases, it can be entirely legitimate to measure the proximity between two elements of the infinite dimensional functional space via a semi-metric, which could prevent those estimators suffering from what we will call the “curse of infinite dimensionality”. AMS 2000 subject classifications: Primary 62G08; secondary 62M40.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"65 1","pages":"30-43"},"PeriodicalIF":3.3,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89097433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy","authors":"Gregory J. Matthews, O. Harel","doi":"10.1214/11-SS074","DOIUrl":"https://doi.org/10.1214/11-SS074","url":null,"abstract":"There is an ever increasing demand from researchers for access to useful microdata files. However, there are also growing concerns regarding the privacy of the individuals contained in the microdata. Ideally, microdata could be released in such a way that a balance between usefulness of the data and privacy is struck. This paper presents a review of proposed methods of statistical disclosure control and techniques for assessing the privacy of such methods under different definitions of disclosure. AMS 2000 subject classifications: Primary 62A01.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"33 1","pages":"1-29"},"PeriodicalIF":3.3,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73540813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Primal and dual model representations in kernel-based learning","authors":"J. Suykens, C. Alzate, K. Pelckmans","doi":"10.1214/09-SS052","DOIUrl":"https://doi.org/10.1214/09-SS052","url":null,"abstract":"Abstract: This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"105 1","pages":"148-183"},"PeriodicalIF":3.3,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89529650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite mixture models and model-based clustering","authors":"Volodymyr Melnykov, R. Maitra","doi":"10.1214/09-SS053","DOIUrl":"https://doi.org/10.1214/09-SS053","url":null,"abstract":"Finite mixture models have a long history in statistics, hav- ing been used to model pupulation heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classication. This paper provides a detailed review into mixture models and model-based clustering. Recent trends in the area, as well as open problems are also discussed.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"23 1","pages":"80-116"},"PeriodicalIF":3.3,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82987379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The ARMA alphabet soup: A tour of ARMA model variants","authors":"S. Holan, R. Lund, Ginger M. Davis","doi":"10.1214/09-SS060","DOIUrl":"https://doi.org/10.1214/09-SS060","url":null,"abstract":"","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"8 1","pages":"232-274"},"PeriodicalIF":3.3,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84595924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}