基于核的学习中的原始和对偶模型表示

IF 11 Q1 STATISTICS & PROBABILITY
J. Suykens, C. Alzate, K. Pelckmans
{"title":"基于核的学习中的原始和对偶模型表示","authors":"J. Suykens, C. Alzate, K. Pelckmans","doi":"10.1214/09-SS052","DOIUrl":null,"url":null,"abstract":"Abstract: This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"105 1","pages":"148-183"},"PeriodicalIF":11.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Primal and dual model representations in kernel-based learning\",\"authors\":\"J. Suykens, C. Alzate, K. Pelckmans\",\"doi\":\"10.1214/09-SS052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"105 1\",\"pages\":\"148-183\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/09-SS052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/09-SS052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 31

摘要

摘要:本文讨论了原始和(拉格朗日)对偶模型表示在监督学习和无监督学习问题中的作用。估计问题的说明在原始层次上被认为是一个约束优化问题。约束与模型相关,模型用特征映射表示。从最优性条件出发,共同求出最优模型表示和模型估计。在对偶层次上,模型用正定核函数表示,这是支持向量机方法的特点。讨论了最小二乘支持向量机作为核心模型如何在回归、分类、主成分分析、谱聚类、典型相关分析、降维和数据可视化等问题中发挥核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primal and dual model representations in kernel-based learning
Abstract: This paper discusses the role of primal and (Lagrange) dual model representations in problems of supervised and unsupervised learning. The specification of the estimation problem is conceived at the primal level as a constrained optimization problem. The constraints relate to the model which is expressed in terms of the feature map. From the conditions for optimality one jointly finds the optimal model representation and the model estimate. At the dual level the model is expressed in terms of a positive definite kernel function, which is characteristic for a support vector machine methodology. It is discussed how least squares support vector machines are playing a central role as core models across problems of regression, classification, principal component analysis, spectral clustering, canonical correlation analysis, dimensionality reduction and data visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信