{"title":"有限混合模型和基于模型的聚类","authors":"Volodymyr Melnykov, R. Maitra","doi":"10.1214/09-SS053","DOIUrl":null,"url":null,"abstract":"Finite mixture models have a long history in statistics, hav- ing been used to model pupulation heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classication. This paper provides a detailed review into mixture models and model-based clustering. Recent trends in the area, as well as open problems are also discussed.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"23 1","pages":"80-116"},"PeriodicalIF":11.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"262","resultStr":"{\"title\":\"Finite mixture models and model-based clustering\",\"authors\":\"Volodymyr Melnykov, R. Maitra\",\"doi\":\"10.1214/09-SS053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite mixture models have a long history in statistics, hav- ing been used to model pupulation heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classication. This paper provides a detailed review into mixture models and model-based clustering. Recent trends in the area, as well as open problems are also discussed.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"23 1\",\"pages\":\"80-116\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"262\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/09-SS053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/09-SS053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Finite mixture models have a long history in statistics, hav- ing been used to model pupulation heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classication. This paper provides a detailed review into mixture models and model-based clustering. Recent trends in the area, as well as open problems are also discussed.
期刊介绍:
Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.