Ilona Sadok, Katarzyna Tyszczuk-Rotko, Robert Mroczka, Jędrzej Kozak, Magdalena Staniszewska
{"title":"Improved Voltammetric Determination of Kynurenine at the Nafion Covered Glassy Carbon Electrode - Application in Samples Delivered from Human Cancer Cells.","authors":"Ilona Sadok, Katarzyna Tyszczuk-Rotko, Robert Mroczka, Jędrzej Kozak, Magdalena Staniszewska","doi":"10.1177/11786469211023468","DOIUrl":"https://doi.org/10.1177/11786469211023468","url":null,"abstract":"<p><p>Nowadays, development of analytical methods responding to a need for rapid and accurate determination of human metabolites is highly desirable. Herein, an electrochemical method employing a Nafion-coated glassy carbon electrode (Nafion/GCE) has been developed for reliable determination of kynurenine (a key tryptophan metabolite) using a differential pulse adsorptive stripping voltammetry. To our knowledge, this is the first analytical method to allow for kynurenine determination at the Nafion-coated electrode. The methodology involves kynurenine pre-concentration in 0.1 M H<sub>2</sub>SO<sub>4</sub> in the Nafion film at the potential of +0.5 V and subsequent stripping from the electrode by differential pulse voltammetry. Under optimal conditions, the sensor can detect 5 nM kynurenine (for the accumulation time of 60 seconds), but the limit of detection can be easily lowered to 0.6 nM by prolonging the accumulation time to 600 seconds. The sensor shows sensitivity of 36.25 μAμM<sup>-1</sup>cm<sup>-2</sup> and 185.50 μAμM<sup>-1</sup>cm<sup>-2</sup> for the accumulation time of 60 and 600 seconds, respectively. The great advantage of the proposed method is easy sensor preparation, employing drop coating method, high sensitivity, short total analysis time, and no need for sample preparation. The method was validated for linearity, precision, accuracy (using a high-performance liquid chromatography), selectivity (towards tryptophan metabolites and different amino acids), and recovery. The comprehensive microscopic and electrochemical characterization of the Nafion/GCE was also conducted with different methods including atomic force microscopy (AFM), optical profilometry, time-of-flight secondary ion mass spectrometry (TOF-SIMS), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The method has been applied with satisfactory results for determination of kynurenine concentration in a culture medium collected from the human ovarian carcinoma cells SK-OV-3 and to measure IDO enzyme activity in the cancer cell extracts.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"14 ","pages":"11786469211023468"},"PeriodicalIF":4.4,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786469211023468","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39196713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuki Murakami, Yukio Imamura, Yoshiyuki Kasahara, Chihiro Yoshida, Yuta Momono, Ke Fang, Toshimasa Nishiyama, Daisuke Sakai, Yukuo Konishi
{"title":"The Effects of Maternal Interleukin-17A on Social Behavior, Cognitive Function, and Depression-Like Behavior in Mice with Altered Kynurenine Metabolites.","authors":"Yuki Murakami, Yukio Imamura, Yoshiyuki Kasahara, Chihiro Yoshida, Yuta Momono, Ke Fang, Toshimasa Nishiyama, Daisuke Sakai, Yukuo Konishi","doi":"10.1177/11786469211026639","DOIUrl":"https://doi.org/10.1177/11786469211026639","url":null,"abstract":"<p><p>Viral infection and chronic maternal inflammation during pregnancy are correlated with a higher prevalence of autism spectrum disorder (ASD). However, the pathoetiology of ASD is not fully understood; moreover, the key molecules that can cross the placenta following maternal inflammation and contribute to the development of ASD have not been identified. Recently, the pro-inflammatory cytokine, interleukin-17A (IL-17A) was identified as a potential mediator of these effects. To investigate the impact of maternal IL-17A on offspring, C57BL/6J dams were injected with IL-17A-expressing plasmids <i>via</i> the tail vein on embryonic day 12.5 (E12.5), and maternal IL-17A was expressed continuously throughout pregnancy. By adulthood, IL-17A-injected offspring exhibited behavioral abnormalities, including social and cognitive defects. Additionally, maternal IL-17A promoted metabolism of the essential amino acid tryptophan, which produces several neuroactive compounds and may affect fetal neurodevelopment. We observed significantly increased levels of kynurenine in maternal serum and fetal plasma. Thus, we investigated the effects of high maternal concentration of kynurenine on offspring by continuously administering mouse dams with kynurenine from E12.5 during gestation. Obviously, maternal kynurenine administration rapidly increased kynurenine levels in the fetal plasma and brain, pointing to the ability of kynurenine to cross the placenta and change the KP metabolites which are affected as neuroactive compounds in the fetal brain. Notably, the offspring of kynurenine-injected mice exhibited behavioral abnormalities similar to those observed in offspring of IL-17A-conditioned mice. Several tryptophan metabolites were significantly altered in the prefrontal cortex of the IL-17A-conditioned and kynurenine-injected adult mice, but not in the hippocampus. Even though we cannot exclude the possibility or other molecules being related to ASD pathogenesis and the presence of a much lower degree of pathway activation, our results suggest that increased kynurenine following maternal inflammation may be a key factor in changing the balance of KP metabolites in fetal brain during neuronal development and represents a therapeutic target for inflammation-induced ASD-like phenotypes.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"14 ","pages":"11786469211026639"},"PeriodicalIF":4.4,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786469211026639","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39184411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johann Steiner, Henrik Dobrowolny, Paul C Guest, Hans-Gert Bernstein, Dietmar Fuchs, Julien Roeser, Paul Summergrad, Gregory F Oxenkrug
{"title":"Plasma Anthranilic Acid and Leptin Levels Predict HAM-D Scores in Depressed Women.","authors":"Johann Steiner, Henrik Dobrowolny, Paul C Guest, Hans-Gert Bernstein, Dietmar Fuchs, Julien Roeser, Paul Summergrad, Gregory F Oxenkrug","doi":"10.1177/11786469211016474","DOIUrl":"https://doi.org/10.1177/11786469211016474","url":null,"abstract":"<p><strong>Objectives: </strong>Major depressive disorder (MDD) is associated with dysregulations of leptin and tryptophan-kynurenine (Trp-Kyn) (TKP) pathways. Leptin, a pro-inflammatory cytokine, activates Trp conversion into Kyn. However, leptin association with down-stream Kyn metabolites in MDD is unknown.</p><p><strong>Methods: </strong>Fasting plasma samples from 29 acutely ill drug-naïve (n = 16) or currently non-medicated (⩾6 weeks; n = 13) MDD patients were analyzed for leptin, Trp, Kyn, its down-stream metabolites (anthranilic [AA], kynurenic [KYNA], xanthurenic [XA] acids and 3-hydroxykynurenine [3HK]), C-reactive protein (CRP), neopterin, body mass index (BMI), and insulin resistance (HOMA-IR). Depression severity was assessed by HAM-D-21.</p><p><strong>Results: </strong>In female (n = 14) (but not in male) patients HAM-D-21 scores correlated with plasma levels of AA (but not other Kyn metabolites) (rho = -0.644, <i>P</i> = .009) and leptin (Spearman's rho = -0.775, <i>P</i> = .001). Inclusion of AA into regression analysis improved leptin prediction of HAM-D from 48.5% to 65.9%. Actual HAM-D scores highly correlated with that calculated by formula: HAM-D = 34.8518-(0.5660 × leptin [ng/ml] + 0.4159 × AA [nmol/l]) (Rho = 0.84, <i>P</i> = .00015). In male (n = 15) (but not in female) patients leptin correlated with BMI, waist circumference/hip ratio, CRP, and HOMA-IR.</p><p><strong>Conclusions: </strong>Present findings of gender specific AA/Leptin correlations with HAM-D are important considering that AA and leptin are transported from plasma into brain, and that AA formation is catalyzed by <i>kynureninase</i>-the only TKP gene associated with depression according to genome-wide analysis. High correlation between predicted and actual HAM-D warrants further evaluation of plasma AA and leptin as an objective laboratory test for the assessment of depression severity in female MDD patients.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"14 ","pages":"11786469211016474"},"PeriodicalIF":4.4,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786469211016474","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39027266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marion Falabrègue, Anne-Claire Boschat, Romain Jouffroy, Marieke Derquennes, Haidar Djemai, Sylvia Sanquer, Robert Barouki, Xavier Coumoul, Jean-François Toussaint, Olivier Hermine, Philippe Noirez, Francine Côté
{"title":"Lack of Skeletal Muscle Serotonin Impairs Physical Performance.","authors":"Marion Falabrègue, Anne-Claire Boschat, Romain Jouffroy, Marieke Derquennes, Haidar Djemai, Sylvia Sanquer, Robert Barouki, Xavier Coumoul, Jean-François Toussaint, Olivier Hermine, Philippe Noirez, Francine Côté","doi":"10.1177/11786469211003109","DOIUrl":"https://doi.org/10.1177/11786469211003109","url":null,"abstract":"<p><p>Low levels of the neurotransmitter serotonin have been associated with the onset of depression. While traditional treatments include antidepressants, physical exercise has emerged as an alternative for patients with depressive disorders. Yet there remains the fundamental question of how exercise is sensed by the brain. The existence of a muscle-brain endocrine loop has been proposed: according to this scenario, exercise modulates metabolization of tryptophan into kynurenine within skeletal muscle, which in turn affects the brain, enhancing resistance to depression. But the breakdown of tryptophan into kynurenine during exercise may also alter serotonin synthesis and help limit depression. In this study, we investigated whether peripheral serotonin might play a role in muscle-brain communication permitting adaptation for endurance training. We first quantified tryptophan metabolites in the blood of 4 trained athletes before and after a long-distance trail race and correlated changes in tryptophan metabolism with physical performance. In parallel, to assess exercise capacity and endurance in trained control and peripheral serotonin-deficient mice, we used a treadmill incremental test. Peripheral serotonin-deficient mice exhibited a significant drop in physical performance despite endurance training. Brain levels of tryptophan metabolites were similar in wild-type and peripheral serotonin-deficient animals, and no products of muscle-induced tryptophan metabolism were found in the plasma or brains of peripheral serotonin-deficient mice. But mass spectrometric analyses revealed a significant decrease in levels of 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in both the soleus and plantaris muscles, demonstrating that metabolization of tryptophan into serotonin in muscles is essential for adaptation to endurance training. In light of these findings, the breakdown of tryptophan into peripheral but not brain serotonin appears to be the rate-limiting step for muscle adaptation to endurance training. The data suggest that there is a peripheral mechanism responsible for the positive effects of exercise, and that muscles are secretory organs with autocrine-paracrine roles in which serotonin has a local effect.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"14 ","pages":"11786469211003109"},"PeriodicalIF":4.4,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786469211003109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25573557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anthony Lim, Christel Harijanto, Sara Vogrin, Gilles Guillemin, Gustavo Duque
{"title":"Does Exercise Influence Kynurenine/Tryptophan Metabolism and Psychological Outcomes in Persons With Age-Related Diseases? A Systematic Review.","authors":"Anthony Lim, Christel Harijanto, Sara Vogrin, Gilles Guillemin, Gustavo Duque","doi":"10.1177/1178646921991119","DOIUrl":"https://doi.org/10.1177/1178646921991119","url":null,"abstract":"<p><strong>Background: </strong>The kynurenine (KYN) pathway has been implicated in many diseases associated with inflammation and aging (\"inflammaging\"). Targeting the kynurenine pathway to modify disease outcomes has been trialled pharmacologically, but the evidence of non-pharmacological means (ie, exercise) remains unclear.</p><p><strong>Objective: </strong>We aim to assess the evidence of the effects of exercise on the kynurenine pathway and psychological outcomes.</p><p><strong>Methods: </strong>Under Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, a systematic literature search was performed in MEDLINE, EMBASE, EMCARE, and the Cochrane Central Registry of Controlled Trials. The main outcomes were changes in kynurenine pathway metabolite levels and psychological outcomes.</p><p><strong>Results: </strong>Six studies were analyzed (total n = 379) with exercise demonstrating significant concomitant effects on kynurenine pathway metabolite levels and associated psychological outcomes in domains of somatization, anxiety, and depression.</p><p><strong>Conclusion: </strong>Exercise has significant concomitant effect on kynurenine pathway metabolite levels and psychological outcomes. However, clear limitations exist in determining if the changes in the kynurenine pathway can fully explain the changes in psychological outcomes, or whether different diseases and exercise interventions act as confounding factors.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"14 ","pages":"1178646921991119"},"PeriodicalIF":4.4,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178646921991119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25389905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localization of Indoleamine 2,3-Dioxygenase-1 and Indoleamine 2,3-Dioxygenase-2 at the Human Maternal-Fetal Interface.","authors":"Yoshiki Kudo, Iemasa Koh, Jun Sugimoto","doi":"10.1177/1178646920984163","DOIUrl":"https://doi.org/10.1177/1178646920984163","url":null,"abstract":"<p><p>Immunohistochemical localization of indoleamine 2,3-dioxygenase-1 and indoleamine 2,3-dioxygenase-2, the first and rate-limiting enzyme in tryptophan metabolism along the kynurenine pathway, has been studied in order to better understand the physiological significance of these enzymes at the maternal-fetal interface of human pregnancy with a gestational age of 7 weeks (n = 1) and term placentas (37-40 weeks of gestation, n = 5). Indoleamine 2,3-dioxygenase-1 protein immunoreactivity was found in glandular epithelium of the decidua and the endothelium of the fetal blood vessels in the villous stroma with some additional positive cells in the villous core and in the decidua. The syncytiotrophoblast stained strongly for indoleamine 2,3-dioxygenase-2. Immunoreactivity of kynurenine, the immediate downstream product of indoleamine 2,3-dioxygenase-mediated tryptophan metabolism, showed the same localization as that of indoleamine 2,3-dioxygenase-1 and indoleamine 2,3-dioxygenase-2, suggesting these are functional enzymes. Interferon-γ added to placental villous explant culture markedly stimulated expression level of both mRNA and immunoreactivity of indoleamine 2,3-dioxygenase-1. The different cellular expression and interferon-γ sensitivity of these enzymes at the maternal-fetal interface suggests distinct physiological roles for each enzyme in normal human viviparity.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"13 ","pages":"1178646920984163"},"PeriodicalIF":4.4,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178646920984163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38824110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle L Garcez, Vanessa X Tan, Benjamin Heng, Gilles J Guillemin
{"title":"Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes.","authors":"Michelle L Garcez, Vanessa X Tan, Benjamin Heng, Gilles J Guillemin","doi":"10.1177/1178646920978404","DOIUrl":"https://doi.org/10.1177/1178646920978404","url":null,"abstract":"<p><p>The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"13 ","pages":"1178646920978404"},"PeriodicalIF":4.4,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178646920978404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38824109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fjh Sorgdrager, C P van Der Ley, M van Faassen, E Calus, E A Nollen, I P Kema, D van Dam, P P De Deyn
{"title":"The Effect of Tryptophan 2,3-Dioxygenase Inhibition on Kynurenine Metabolism and Cognitive Function in the APP23 Mouse Model of Alzheimer's Disease.","authors":"Fjh Sorgdrager, C P van Der Ley, M van Faassen, E Calus, E A Nollen, I P Kema, D van Dam, P P De Deyn","doi":"10.1177/1178646920972657","DOIUrl":"https://doi.org/10.1177/1178646920972657","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is associated with progressive endogenous neurotoxicity and hampered inflammatory regulation. The kynurenine (Kyn) pathway, which is controlled by tryptophan 2,3-dioxygenase (TDO), produces neuroactive and anti-inflammatory metabolites. Age-related Kyn pathway activation might contribute to AD pathology in humans, and inhibition of TDO was found to reduce AD-related cellular toxicity and behavioral deficits in animal models. To further explore the effect of aging on the Kyn pathway in the context of AD, we analyzed Kyn metabolite profiles in serum and brain tissue of the APP23 amyloidosis mouse model. We found that aging had genotype-independent effects on Kyn metabolite profiles in serum, cortex, hippocampus and cerebellum, whereas serum concentrations of many Kyn metabolites were reduced in APP23 mice. Next, to further establish the role of TDO in AD-related behavioral deficits, we investigated the effect of long-term pharmacological TDO inhibition on cognitive performance in APP23 mice. Our results indicated that TDO inhibition reversed recognition memory deficits without producing measurable changes in cerebral Kyn metabolites. TDO inhibition did not affect spatial learning and memory or anxiety-related behavior. These data indicate that age-related Kyn pathway activation is not specific for humans and could represent a cross-species phenotype of aging. These data warrant further investigation on the role of peripheral Kyn pathway disturbances and cerebral TDO activity in AD pathophysiology.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"13 ","pages":"1178646920972657"},"PeriodicalIF":4.4,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178646920972657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38824108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Social and Biological Parameters Involved in Suicide Ideation During the COVID-19 Pandemic: A Narrative Review.","authors":"Chenthamara Dhrisya, Murugan Prasathkumar, Robert Becky, Salim Anisha, Subramaniam Sadhasivam, Musthafa Mohamed Essa, Saravana Babu Chidambaram, Buthainah Al-Balushi, Gilles J Guillemin, M Walid Qoronfleh","doi":"10.1177/1178646920978243","DOIUrl":"10.1177/1178646920978243","url":null,"abstract":"<p><p>Fear is an indispensable characteristic of any infectious disease, and the alarm will be further amplified when the infection spreads uncontrollable, unpredictable, and global. The novel corona virus (SARS CoV-2) lead Covid-19, has been declared as a global emergency by WHO as it has affected millions of people with a high mortality rate. The non-availability of medicine for Covid-19 and the various control measures such as social distancing, self-isolation, house quarantine, and the new normal implementation by different nations across the world to control the spread of Covid-19 made people vulnerable to fear and anxiety. As a result, considerable number of Covid-19-related suicidal deaths has been reported across the world during this pandemic. There have been several studies which describe the psychosocial aspects of suicidal ideation. However, the research on the biological aspects of suicidal ideation/suicidal risk factors that are related to pandemic are unreported. Hence this review article is intended to provide a comprehensive analysis of suicidal deaths during Covid-19 and also aimed to addresses the possible link between suicidal ideation and different factors, including psycho-social, behavioral, neurobiological factors (proximal, distal, and inflammatory) and immunity. The alterations in glutamatergic and GABAergic neurotransmitters had upregulated the GABARB3, GABARA4, GABARA3, GABARR1, GABARG2, and GAD2 gene expressions in suicidal victims. The changes in the Kynurenine (KYN) pathway, Hypothalamus-Pituitary-Adrenal axis (HPA axis) hyperactivation, and dysregulation of serotonin biosynthesis would significantly alter the brain chemistry in people with suicide ideation.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"13 ","pages":"1178646920978243"},"PeriodicalIF":2.7,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b4/8a/10.1177_1178646920978243.PMC8851148.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39814407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Saturated Fatty Acid Intake Is Associated With Increased Inflammation, Conversion of Kynurenine to Tryptophan, and Delta-9 Desaturase Activity in Healthy Humans.","authors":"Jade Berg, Neda Seyedsadjadi, Ross Grant","doi":"10.1177/1178646920981946","DOIUrl":"https://doi.org/10.1177/1178646920981946","url":null,"abstract":"<p><p>Saturated fat ingestion has previously been linked to increases in inflammation. However the relationship between saturated fatty acid (SFA) intake and the kynureine:tryptophan ratio ([Kyn]:[Trp]), a marker of inflammation, has not been previously investigated. This study evaluated in healthy, middle aged, individuals (men = 48, women = 52), potential relationships between SFA intake, red blood cell (RBC) membrane SFAs and monounsaturated fatty acids (MUFA), the [Kyn]:[Trp] ratio, C-reactive protein (CRP), TNF-α and Δ9 desaturase activity. [Kyn]:[Trp] was positively associated with increases in Total fat (<i>P</i> = .034) intake, including Total SFA (<i>P</i> = .029) and Total MUFA (<i>P</i> = .042) intakes. Unexpectedly the [Kyn]:[Trp] ratio was inversely associated with the percentage of Total SFA (<i>P</i> = .004) and positively associated with percentage of Total MUFA (<i>P</i> = .012) present in the RBC membrane. We found a positive association between Δ9 desaturase activity, responsible for the desaturation of a various SFAs to MUFAs, and [Kyn]:[Trp] (<i>P</i> = .008). [Kyn]:[Trp] was also positively associated with CRP (<i>P</i> = .044), however no significant relationship between [Kyn]:[Trp] and TNF-α was found. This study shows for the first time that SFA consumption increases inflammatory pathways linked to increased tryptophan to kynurenine conversion, even in healthy humans. Our data also suggests that SFA linked increases in inflammation occur concomitantly with an upregulation of Δ9 desaturase activity resulting in increased desaturation of SFA substrates to their MUFA derivatives.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"13 ","pages":"1178646920981946"},"PeriodicalIF":4.4,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178646920981946","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38793931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}