{"title":"Reaction Kinetics of Levulinic Acid Synthesis from Glucose Using Bronsted Acid Catalyst","authors":"M. E. Toif, M. Hidayat, R. Rochmadi, A. Budiman","doi":"10.21203/rs.3.rs-609706/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-609706/v1","url":null,"abstract":"\u0000 Glucose is the primary derivative of lignocellulosic biomass, which is abundantly available. Glucose has excellent potential to be converted into valuable compounds such as ethanol, sorbitol, gluconic acid, and levulinic acid (LA). Levulinic acid is a very promising green platform chemical. It is composed of two functional groups, ketone and carboxylate groups which can act as highly reactive electrophiles for nucleophilic attack so it has extensive applications, including fuel additives, raw materials for the pharmaceutical industry, and cosmetics. The reaction kinetics of LA synthesis from glucose using hydrochloric acid catalyst (bronsted acid) were studied in a wide range of operating conditions, i.e., temperature of 140-180 oC, catalyst concentration of 0.5-1.5 M, and initial glucose concentration of 0.1-0.5 M. The highest LA yield is 48.34 %wt at 0.1 M initial glucose concentration, 1 M HCl, and temperature of 180 oC. The experimental results show that the bronsted acid catalyst's reaction pathway consists of glucose decomposition to levoglucosan (LG), conversion of LG to 5-hydroxymethylfurfural (HMF), and rehydration of HMF to LA. The experimental data yields a good fitting by assuming a first-order reaction model.","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47288425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling Based Analysis and Optimization of Simultaneous Saccharification and Fermentation for the Production of Lignocellulosic-Based Xylitol","authors":"I. M. Hidayatullah, T. Setiadi, M. Kresnowati","doi":"10.9767/BCREC.16.4.11807.857-868","DOIUrl":"https://doi.org/10.9767/BCREC.16.4.11807.857-868","url":null,"abstract":"\u0000 Simultaneous saccharification and fermentation (SSF) configuration offers an efficient used of the reactor. In this configuration, both the hydrolysis and fermentation processes are conducted simultaneously in a single bioreactor and the overall process may be accelerated. Problems may arise if both processes have different optimum conditions, and therefore process optimization is required. This paper presents the development of mathematical model over SSF strategy implementation for producing xylitol from hemicellulose component of lignocellulosic materials. The model comprises of the hydrolysis of hemicellulose and the fermentation of hydrolysate into xylitol. The model was simulated for various process temperature, prior hydrolysis time, and inoculum concentration. Simulation of the developed kinetics model shows that the optimum SSF temperature is 36oC, whereas conducting a prior hydrolysis at its optimum hydrolysis temperature will further shorten the processing time and increase the xylitol productivity. On the other hand, increasing the inoculum size will shorten the processing time further. For an initial xylan concentration of 100 g/L, the best condition is obtained by performing 21-hour prior hydrolysis at 60oC, followed by SSF at 36oC by adding 2.0 g/L inoculum, giving 46.27 g/L xylitol within 77 hours of total processing time.","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49179417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Paramesti, W. Trisunaryanti, S. Larasati, N. Santoso, S. Sudiono, T. Triyono, D. A. Fatmawati
{"title":"The Influence of Metal Loading Amount on Ni/Mesoporous Silica Extracted from Lapindo Mud Templated by CTAB for Conversion of Waste Cooking Oil into Biofuel","authors":"C. Paramesti, W. Trisunaryanti, S. Larasati, N. Santoso, S. Sudiono, T. Triyono, D. A. Fatmawati","doi":"10.9767/BCREC.16.1.9442.22-30","DOIUrl":"https://doi.org/10.9767/BCREC.16.1.9442.22-30","url":null,"abstract":"The synthesis and characterization of Ni/mesoporous silica (Ni/MS) catalysts from Lapindo mud with various metal loading for the hydrocracking of waste cooking oil into biofuel has been conducted. The MS was synthesized by the hydrothermal method using CTAB as a template. The nickel-metal of 4, 6, and 8 wt% was loaded into the MS using salt precursors of Ni(NO3)2.6H2O via wet impregnation, produced the Ni(4)/MS, Ni(6)/MS, and Ni(8)/MS catalysts, respectively. The materials produced were then characterized by X-ray Powder Diffraction (XRD), FourierTransform Infrared Spectroscopy (FT-IR), and Surface Area Analyzer (SAA), and Absorption Atomic Spectrophotometry (AAS). The catalytic activity test was carried out for hydrocracking of waste cooking oil and the resulted liquid product was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). The results showed that the specific surface area of Ni(4)/MS, Ni(6)/MS, and Ni(8)/MS catalysts are 63.08, 91.45, and 120.45 m2/g, respectively. The liquid products of the hydrocracking using Ni(4)/MS, Ni(6)/MS, and Ni(8)/MS catalysts were 80.57, 74.63, and 75.77 wt%, where the total biofuel produced was 55.46, 50.93, and 54.05 wt%, respectively. Based on these results, Ni(4)/MS material was successfully used as the most potent catalyst in the hydrocracking of waste cooking oil into","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":"16 1","pages":"22-30"},"PeriodicalIF":1.5,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41906367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}