The Promotion Effect of Cu on the Pd/C Catalyst in the Chemoselective Hydrogenation of Unsaturated Carbonyl Compounds

IF 1.3 Q3 ENGINEERING, CHEMICAL
K. Mustikasari, Rodiansono Rodiansono, M. Astuti, S. Husain, S. Sutomo
{"title":"The Promotion Effect of Cu on the Pd/C Catalyst in the Chemoselective Hydrogenation of Unsaturated Carbonyl Compounds","authors":"K. Mustikasari, Rodiansono Rodiansono, M. Astuti, S. Husain, S. Sutomo","doi":"10.9767/BCREC.16.2.10398.267-279","DOIUrl":null,"url":null,"abstract":"Highly efficient and selective hydrogenation of a,b-unsaturated carbonyl compounds to unsaturated alcohol using bimetallic palladium-copper supported on carbon (denoted as Pd-Cu(3.0)/C; 3.0 is Pd/Cu molar ratio) catalyst is demonstrated. Pd-Cu(3.0)/C catalyst was prepared via a simple hydrothermal route under air atmosphere at 150 °C for 24 h followed by reduction with hydrogen at 400°C for 1.5 h. The chemoselective hydrogenation of typical a,b-unsaturated carbonyl ketone (2-cyclohexene-1-one) and aldehyde (trans-2-hexenaldehyde), and chemoselective hydrogenation of FFald and (E)-non-3-en-2-one mixture demonstrated high productivity, leading to high selectivity of unsaturated alcohols. The presence of bimetallic Pd-Cu alloy phase with relatively high H2 uptakes was observed, enabling to preferentially hydrogenate C=O rather than to C=C bonds under mild reaction conditions. Pd-Cu(3.0)/C catalyst was found to stable and reusable for at least four reaction runs and the activity and selectivity of the catalyst can be restored to the original after rejuvenation with H2 at 400 °C for 1.5 h. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":"16 1","pages":"267-279"},"PeriodicalIF":1.3000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/BCREC.16.2.10398.267-279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly efficient and selective hydrogenation of a,b-unsaturated carbonyl compounds to unsaturated alcohol using bimetallic palladium-copper supported on carbon (denoted as Pd-Cu(3.0)/C; 3.0 is Pd/Cu molar ratio) catalyst is demonstrated. Pd-Cu(3.0)/C catalyst was prepared via a simple hydrothermal route under air atmosphere at 150 °C for 24 h followed by reduction with hydrogen at 400°C for 1.5 h. The chemoselective hydrogenation of typical a,b-unsaturated carbonyl ketone (2-cyclohexene-1-one) and aldehyde (trans-2-hexenaldehyde), and chemoselective hydrogenation of FFald and (E)-non-3-en-2-one mixture demonstrated high productivity, leading to high selectivity of unsaturated alcohols. The presence of bimetallic Pd-Cu alloy phase with relatively high H2 uptakes was observed, enabling to preferentially hydrogenate C=O rather than to C=C bonds under mild reaction conditions. Pd-Cu(3.0)/C catalyst was found to stable and reusable for at least four reaction runs and the activity and selectivity of the catalyst can be restored to the original after rejuvenation with H2 at 400 °C for 1.5 h. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Cu对Pd/C催化剂在不饱和羰基化合物化学选择性加氢反应中的促进作用
使用负载在碳上的双金属钯铜(表示为Pd-Cu(3.0)/C;3.0是Pd/Cu摩尔比)催化剂。Pd-Cu(3.0)/C催化剂是通过一种简单的水热途径在150°C的空气气氛下制备24小时,然后在400°C下用氢气还原1.5小时。典型的a,b不饱和羰基酮(2-环己烯-1-酮)和醛(反式-2-己烯醛)的化学选择性加氢,FFald和(E)-非-3-烯-2-酮混合物的化学选择性加氢显示出高生产率,导致不饱和醇的高选择性。观察到具有相对高H2吸收的双金属Pd-Cu合金相的存在,使得在温和的反应条件下能够优先氢化C=O而不是C=C键。Pd-Cu(3.0)/C催化剂被发现稳定且可重复使用至少四次反应,在400°C下用H2再生1.5小时后,催化剂的活性和选择性可以恢复到原来的水平。版权所有©2021作者,BCREC集团出版。这是CC BY-SA许可证下的开放访问文章(https://creativecommons.org/licenses/by-sa/4.0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
6.70%
发文量
52
审稿时长
12 weeks
期刊介绍: Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信