A Two-Step SO3H/ICG Catalyst Synthesis for Biodiesel Production: Optimization of Sulfonation Step via Microwave Irradiation

IF 1.3 Q3 ENGINEERING, CHEMICAL
Nur Nazlina Saimon, N. Ngadi, M. Jusoh, Z. Zakaria
{"title":"A Two-Step SO3H/ICG Catalyst Synthesis for Biodiesel Production: Optimization of Sulfonation Step via Microwave Irradiation","authors":"Nur Nazlina Saimon, N. Ngadi, M. Jusoh, Z. Zakaria","doi":"10.9767/BCREC.16.1.9613.63-75","DOIUrl":null,"url":null,"abstract":"Conventional heating, a common method used for heterogeneous solid acid catalyst synthesis unknowingly consumes massive time and energy. In this study, acid catalyst was prepared through sulfonation process of incomplete carbonized glucose (ICG) via microwave-assisted technique to shorten the heating time and energy consumption. Optimization of the sulfonation process of ICG via microwave-assisted was carried out. Four-factor-threelevel central composite design (CCD) was used to develop the design of experiments (DOE). Interaction between two factors was evaluated to determine the optimum process conditions. A quadratic model was proposed for prediction of biodiesel yield (Y) from palm fatty acid distillate (PFAD) and its conversion (C). The application of DOE successfully optimized the operating conditions for the two-step SO3H/ICG catalyst synthesis to be used for the esterification process. The optimized conditions of the best performing SO3H/ICG with maximum Y and C were at 7.5 minutes of reaction time, 159.5 mL of H2SO4 used, 671 rpm of stirring rate as well as 413.64 watt of power level. At these optimum conditions the predicted yield percentage and conversion percentage were 94.01% and 91.89%, respectively, which experimentally verified the accuracy of the model. The utilization of sulfonated glucose solid acid catalyst via microwave-assisted in biodiesel production has great potential towards sustainable and green method of synthesizing catalyst for biodiesel. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":"16 1","pages":"63-75"},"PeriodicalIF":1.3000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/BCREC.16.1.9613.63-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Conventional heating, a common method used for heterogeneous solid acid catalyst synthesis unknowingly consumes massive time and energy. In this study, acid catalyst was prepared through sulfonation process of incomplete carbonized glucose (ICG) via microwave-assisted technique to shorten the heating time and energy consumption. Optimization of the sulfonation process of ICG via microwave-assisted was carried out. Four-factor-threelevel central composite design (CCD) was used to develop the design of experiments (DOE). Interaction between two factors was evaluated to determine the optimum process conditions. A quadratic model was proposed for prediction of biodiesel yield (Y) from palm fatty acid distillate (PFAD) and its conversion (C). The application of DOE successfully optimized the operating conditions for the two-step SO3H/ICG catalyst synthesis to be used for the esterification process. The optimized conditions of the best performing SO3H/ICG with maximum Y and C were at 7.5 minutes of reaction time, 159.5 mL of H2SO4 used, 671 rpm of stirring rate as well as 413.64 watt of power level. At these optimum conditions the predicted yield percentage and conversion percentage were 94.01% and 91.89%, respectively, which experimentally verified the accuracy of the model. The utilization of sulfonated glucose solid acid catalyst via microwave-assisted in biodiesel production has great potential towards sustainable and green method of synthesizing catalyst for biodiesel. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
两步SO3H/ICG催化剂合成生物柴油:微波辐照磺化步骤优化
常规加热是合成非均相固体酸催化剂的常用方法,在不知不觉中消耗了大量的时间和能量。本研究采用微波辅助技术对不完全碳化葡萄糖(ICG)进行磺化反应制备酸催化剂,以缩短加热时间和能耗。对微波辅助磺化工艺进行了优化。采用四因素三水平中心复合设计(CCD)进行实验设计。评价了两个因素之间的相互作用,确定了最佳工艺条件。建立了预测棕榈脂肪酸馏分(PFAD)生物柴油产率(Y)和转化率(C)的二次模型。应用DOE成功地优化了用于酯化工艺的两步SO3H/ICG催化剂合成的操作条件。最佳SO3H/ICG工艺条件为:反应时间7.5 min, H2SO4用量159.5 mL,搅拌速度671 rpm,功率413.64 w, Y和C最大。在此最优条件下,预测产率和转化率分别为94.01%和91.89%,实验验证了模型的准确性。利用磺化葡萄糖固体酸催化剂微波辅助生产生物柴油,是一种可持续、绿色的生物柴油催化剂合成方法。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
6.70%
发文量
52
审稿时长
12 weeks
期刊介绍: Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信