{"title":"Have Your Cake and Eat It? Price Discount Programs under the Membership Free Shipping Policy in Online Retailing","authors":"Zhipeng Tang, Guowei Hua, Tai Chiu Edwin Cheng, Xiaowei Li, Jingxin Dong","doi":"10.3390/jtaer19010012","DOIUrl":"https://doi.org/10.3390/jtaer19010012","url":null,"abstract":"Online retailers offer free shipping services, such as threshold free shipping (TFS) and membership free shipping (MFS), to promote sales and provide a better shopping experience to consumers in online retailing. Although MFS attracts more member-consumers, it encourages consumers to place more small orders than TFS, which significantly increases the operational costs of the online retailer. To address this issue, we propose two price discount policies under the MFS service, namely the limited-time discount and the threshold discount. Then, we build analytical models under these two policies to explore the impacts of offering price discounts on the retailer’s profit and consumers’ welfare. We find that no matter which discount policy is adopted, consumers are more likely to consolidate several small orders from different time periods into a big one to obtain the discount. The economies of scale generated by consumers consolidating their orders under these discount policies can help reduce online retailers’ operational costs. Therefore, regardless of any discount policy offered by the online retailer under the MFS service, consumers will place more big orders and more member-consumers are attracted, i.e., the online retailer can have its cake and eat it too. Our research findings provide decision-making insights for practitioners who offer free shipping services and price discounts to consumers in online retailing.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"138 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139581257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
María Jesús Carrasco-Santos, Carmen Cristófol-Rodríguez, Ismael Begdouri-Rodríguez
{"title":"Evolution of Men’s Image in Fashion Advertising: Breaking Stereotypes and Embracing Diversity","authors":"María Jesús Carrasco-Santos, Carmen Cristófol-Rodríguez, Ismael Begdouri-Rodríguez","doi":"10.3390/jtaer19010011","DOIUrl":"https://doi.org/10.3390/jtaer19010011","url":null,"abstract":"This research study explores the representation of men in fashion advertising and investigates whether societal and fashion evolution has contributed to a departure from traditional stereotypes. The research methodology comprised three phases: content analysis, surveys, and in-depth interviews with an expert panel, examining how men’s clothing has been communicated in fashion over a span of 50 years, with a focus on three renowned brands: Lacoste, Burberry, and Hugo Boss. The findings reveal a notable shift in fashion advertising targeting men, characterized by increased racial diversity among models and a more diverse depiction of attitudes and poses. However, homosexual or bisexual couples remain largely unrepresented. The study highlights the influence of advertising on shaping the image of the “new man”, evident through the diminishing gender boundaries in clothing and accessories and the persistent struggle to break free from stereotypes. The study underscores the significance of ongoing efforts to promote diversity and inclusivity in fashion advertising.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"1 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139581256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Future of Electronic Commerce in the IoT Environment","authors":"Antonina Lazić, Saša Milić, Dragan Vukmirović","doi":"10.3390/jtaer19010010","DOIUrl":"https://doi.org/10.3390/jtaer19010010","url":null,"abstract":"The Internet of Things (IoT) was born from the fusion of virtual and physical space and became the initiator of many scientific fields. Economic sustainability is the key to further development and progress. To keep up with the changes, it is necessary to adapt economic models and concepts to meet the requirements of future smart environments. Today, the need for electronic commerce (e-commerce) has become an economic priority during the transition between Industry 4.0 and Industry 5.0. Unlike mass production in Industry 4.0, customized production in Industry 5.0 should gain additional benefits in vertical management and decision-making concepts. The authors’ research is focused on e-commerce in a three-layer vertical IoT environment. The vertical IoT concept is composed of edge, fog, and cloud layers. Given the ubiquity of artificial intelligence in data processing, economic analysis, and predictions, this paper presents a few state-of-the-art machine learning (ML) algorithms facilitating the transition from a flat to a vertical e-commerce concept. The authors also propose hands-on ML algorithms for a few e-commerce types: consumer–consumer and consumer–company–consumer relationships. These algorithms are mainly composed of convolutional neural networks (CNNs), natural language understanding (NLU), sequential pattern mining (SPM), reinforcement learning (RL for agent training), algorithms for clicking on the item prediction, consumer behavior learning, etc. All presented concepts, algorithms, and models are described in detail.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"4 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139581185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Consumer Behavior Analysis Framework toward Improving Market Performance Indicators: Saudi’s Retail Sector as a Case Study","authors":"Monerah Alawadh, Ahmed Barnawi","doi":"10.3390/jtaer19010009","DOIUrl":"https://doi.org/10.3390/jtaer19010009","url":null,"abstract":"Studying customer behavior and anticipating future trends is a challenging task, as customer behavior is complex and constantly evolving. To effectively anticipate future trends, businesses need to analyze large amounts of data, use sophisticated analytical techniques, and stay up-to-date with the latest research and industry trends. In this paper, we propose a comprehensive framework to identify trends in consumer behavior using multiple layers of processing, including clustering, classification, and association rule learning. The aim is to help a major retailer in Saudi Arabia better understand customer behavior by utilizing the power of big data analysis. The proposed framework is presented as being generalized to gain insight into the generated big data and enable data-driven decision-making in other relevant domains. We developed this framework in collaboration with a large supermarket chain in Saudi Arabia, which provided us with over 1,000,000 sales transaction records belonging to around 30,000 of their loyal customers. In this study, we apply our proposed framework to those data as a case study and present our initial results of consumer clustering and association rules for each cluster. Moreover, we analyze our findings to figure out how we can further utilize intelligence to predict customer behavior in clustered groups.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"73 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139501224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bassant A. Abdelfattah, Saad M. Darwish, Saleh M. Elkaffas
{"title":"Enhancing the Prediction of Stock Market Movement Using Neutrosophic-Logic-Based Sentiment Analysis","authors":"Bassant A. Abdelfattah, Saad M. Darwish, Saleh M. Elkaffas","doi":"10.3390/jtaer19010007","DOIUrl":"https://doi.org/10.3390/jtaer19010007","url":null,"abstract":"Social media platforms have allowed many people to publicly express and disseminate their opinions. A topic of considerable interest among researchers is the impact of social media on predicting the stock market. Positive or negative feedback about a company or service can potentially impact its stock price. Nevertheless, the prediction of stock market movement using sentiment analysis (SA) encounters hurdles stemming from the imprecisions observed in SA techniques demonstrated in prior studies, which overlook the uncertainty inherent in the data and consequently directly undermine the credibility of stock market indicators. In this paper, we proposed a novel model to enhance the prediction of stock market movements using SA by improving the process of SA using neutrosophic logic (NL), which accurately classifies tweets by handling uncertain and indeterminate data. For the prediction model, we use the result of sentiment analysis and historical stock market data as input for a deep learning algorithm called long short-term memory (LSTM) to predict the stock movement after a specific number of days. The results of this study demonstrated a predictive accuracy that surpasses the accuracy rate of previous studies in predicting stock price fluctuations when using the same dataset.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"7 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139463263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Alves Gomes, Richard Meyes, Philipp Meisen, Tobias Meisen
{"title":"It’s Not Always about Wide and Deep Models: Click-Through Rate Prediction with a Customer Behavior-Embedding Representation","authors":"Miguel Alves Gomes, Richard Meyes, Philipp Meisen, Tobias Meisen","doi":"10.3390/jtaer19010008","DOIUrl":"https://doi.org/10.3390/jtaer19010008","url":null,"abstract":"Alongside natural language processing and computer vision, large learning models have found their way into e-commerce. Especially, for recommender systems and click-through rate prediction, these models have shown great predictive power. In this work, we aim to predict the probability that a customer will click on a given recommendation, given only its current session. Therefore, we propose a two-stage approach consisting of a customer behavior-embedding representation and a recurrent neural network. In the first stage, we train a self-supervised skip-gram embedding on customer activity data. The resulting embedding representation is used in the second stage to encode the customer sequences which are then used as input to the learning model. Our proposed approach diverges from the prevailing trend of utilizing extensive end-to-end models for click-through rate prediction. The experiments, which incorporate a real-world industrial use case and a widely used as well as openly available benchmark dataset, demonstrate that our approach outperforms the current state-of-the-art models. Our approach predicts customers’ click intention with an average F1 accuracy of 94% for the industrial use case which is one percentage point higher than the state-of-the-art baseline and an average F1 accuracy of 79% for the benchmark dataset, which outperforms the best tested state-of-the-art baseline by more than seven percentage points. The results show that, contrary to current trends in that field, large end-to-end models are not always needed. The analysis of our experiments suggests that the reason for the performance of our approach is the self-supervised pre-trained embedding of customer behavior that we use as the customer representation.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"20 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139463210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Prior Negative Experience and Personality Traits on WeChat and TikTok Ad Avoidance among Chinese Gen Y and Gen Z","authors":"Ningyan Cao, N. Isa, Selvan Perumal","doi":"10.3390/jtaer19010006","DOIUrl":"https://doi.org/10.3390/jtaer19010006","url":null,"abstract":"While numerous people use social mobile applications, ads within these apps are often avoided. Although the significance of prior negative experience and personality traits in impacting consumers’ perceptions and behaviors has been acknowledged, limited research has explored their influence on ad perceptions and avoidance. This study aims to examine the effects of prior negative experience and personality traits on ad perceptions and ad avoidance of Generation Y (Gen Y) and Generation Z (Gen Z) within two prominent mobile social apps: WeChat and TikTok. An online survey was used to gather data from 353 Chinese Gen Y and Gen Zers who were active users of WeChat and TikTok. Findings from several regression analyses show that prior negative experience is an essential determinant of ad avoidance, influencing not just directly but indirectly by diminishing perceived ad personalization and intensifying perceived goal impediment and ad clutter. Personality traits also significantly affect ad avoidance, with conscientiousness exerting a positive effect, whereas agreeableness has a negative impact. Notably, agreeableness, emotional stability, and openness to experience moderate the associations between ad perceptions and avoidance. Intriguingly, the effects of these factors are platform-specific, with WeChat’s main factor for ad avoidance being erceived goal impediment and TikTok’s main factor being ad clutter. Based on these findings, the theoretical and practical implications are discussed.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"14 7","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139438639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biao Xu, Jinting Huang, Xiaodan Zhang, Thomas Brashear Alejandro
{"title":"Strategic Third-Party Product Entry and Mode Choice under Self-Operating Channels and Marketplace Competition: A Game-Theoretical Analysis","authors":"Biao Xu, Jinting Huang, Xiaodan Zhang, Thomas Brashear Alejandro","doi":"10.3390/jtaer19010005","DOIUrl":"https://doi.org/10.3390/jtaer19010005","url":null,"abstract":"To bolster their competitiveness and profitability, prominent e-commerce platforms have embraced dual retailing channels: self-operating channels and online marketplaces. However, a discernible trend is emerging wherein e-commerce platforms are expanding their marketplaces to encompass competitive third-party suppliers. Motivated by this trend, this study sought to examine the strategic integration of a third-party product amidst the competition between a self-operating channel and a marketplace. This investigation involved the development of a game-theoretic model involving a platform and two representative suppliers—an incumbent supplier and a new entrant. Specifically, we delved into establishing an equilibrium partnership between the platform and the new entrant supplier while also evaluating the self-operating strategy of the established supplier. Our analysis uncovered a counterintuitive outcome: an escalation in the commission rate resulted in diminished profits for the established supplier. Furthermore, we ascertained that the economic implications of a competitive product entry pivot significantly on product quality. Lastly, we demonstrated that the revenue-sharing rate plays a pivotal role in influencing the self-operating strategy of the established supplier, and the market equilibrium hinges on the interplay among product quality, the commission rate, and the revenue-sharing rate. These insights provide invaluable guidance for marketers and e-commerce platforms in their strategic decision-making processes.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"1 7","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of a Microeconomic Approach for Explanation of Citizen Participation in Open Government","authors":"María Verónica Alderete","doi":"10.3390/jtaer19010003","DOIUrl":"https://doi.org/10.3390/jtaer19010003","url":null,"abstract":"The digital economy and the sharing economy have changed the role citizens may acquire in society. Citizens can perform at least two roles from the open government perspective: on the one hand, they can be passive users/demanders of information and, on the other hand, they can provide or produce the information in an active manner. The objective of this paper is to offer a theoretical model to explain citizens’ incentives to participate in open government projects. Which is the opportunity cost of participation for the citizen? Which are the drivers of the preferences for the social good? This model is based on the utility function and consumption theory. We complement the theoretical framework with an exploratory–descriptive analysis based on a case study’s primary data about citizen participation. In democracy projects where citizens actively collaborate and could earn monetary gains or become entrepreneurs, the opportunity cost of participation is lower than in a passive type and the amount of the social good depends on the preferences. Preferences for social goods are related to community experiences and e-government and they also affect the decision to participate. Very few studies in the field of open government have pretended to explain citizens’ participation by using microeconomic foundations.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"25 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139067577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can the Conditional Rebate Strategy Work? Signaling Quality via Induced Online Reviews","authors":"Lu Xiao, Chen Qian, Chaojie Wang, Jun Wang","doi":"10.3390/jtaer19010004","DOIUrl":"https://doi.org/10.3390/jtaer19010004","url":null,"abstract":"Online reviews are an important part of product information and have important effects on consumers’ purchasing decisions. Some sellers try to manipulate the market by inducing online reviews. In this study, a signal game model based on Bayesian conditional probability is constructed to analyze the preconditions, decision-making process, and effect on market demand and profit of this behavior. The results show that first, when consumer sensitivity to rebates reaches a certain threshold, low-quality sellers will adopt a conditional rebate strategy to induce consumers to give positive reviews. Second, the optimal rebate cost (β*) is obtained, where β* increases with the product price (p), but it is not necessarily monotonic in consumers’ sensitivity to rebates (ρ) or the proportion of high-quality products (α). Third, the conditional rebate strategy can only work in a market dominated by low-quality goods. Using the conditional rebate strategy in a market dominated by high-quality goods will not bring benefits to low-quality sellers but will harm their profits. This study proposes that some developing online markets have collusive behaviors owing to a lack of regulations and laws, as well as consumers’ concern for small interests. Ensuring the orderly development of online markets will require joint efforts by platform enterprises, government agencies, and consumers.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"44 6 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139067770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}