AIMS Energy最新文献

筛选
英文 中文
Editorial to the 'Special Issue—Distribution network reliability in Smart Grids and Microgrids' of AIMS Energy 《AIMS能源》杂志“特刊——智能电网和微电网中的配电网可靠性”的社论
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022026
S. Rizzo
{"title":"Editorial to the 'Special Issue—Distribution network reliability in Smart Grids and Microgrids' of AIMS Energy","authors":"S. Rizzo","doi":"10.3934/energy.2022026","DOIUrl":"https://doi.org/10.3934/energy.2022026","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70226224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-of-the-art review of fuel cell hybrid electric vehicle energy management systems 燃料电池混合动力汽车能量管理系统研究进展
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022023
Samson Obu Showers, Atanda Kamoru Raji
{"title":"State-of-the-art review of fuel cell hybrid electric vehicle energy management systems","authors":"Samson Obu Showers, Atanda Kamoru Raji","doi":"10.3934/energy.2022023","DOIUrl":"https://doi.org/10.3934/energy.2022023","url":null,"abstract":"The primary purpose of fuel cell hybrid electric vehicles (FCHEVs) is to tackle the challenge of environmental pollution associated with road transport. However, to benefit from the enormous advantages presented by FCHEVs, an appropriate energy management system (EMS) is necessary for effective power distribution between the fuel cell and the energy storage systems (ESSs). The past decade has brought a significant increase in the number of FCHEVs, with different EMSs having been implemented due to technology advancement and government policies. These methods are broadly categorised into rule-based EMS methods, machine learning methods and optimisation-based control methods. Therefore, this paper presents a systematic literature review on the different EMSs and strategies used in FCHEVs, with special focus on fuel cell/lithium-ion battery hybrid electric vehicles. The contribution of this study is that it presents a quantitative evaluation of the different EMSs selected by comparing and categorising them according to principles, technology maturity, advantages and disadvantages. In addition, considering the drawbacks of some EMSs, gaps were highlighted for future research to create the pathway for comprehensive emerging solutions. Therefore, the results of this paper will be beneficial to researchers and electric vehicle designers saddled with the responsibility of implementing an efficient EMS for vehicular applications.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70226602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Techno-economic assessment of microgrid in rural India considering incremental load growth over years 考虑多年负荷增量增长的印度农村微电网技术经济评估
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022041
M. Raman, P. Meena, V. Champa, V. Prema, P. Mishra
{"title":"Techno-economic assessment of microgrid in rural India considering incremental load growth over years","authors":"M. Raman, P. Meena, V. Champa, V. Prema, P. Mishra","doi":"10.3934/energy.2022041","DOIUrl":"https://doi.org/10.3934/energy.2022041","url":null,"abstract":"India, being a developing country with a fast-growing economy, experiences ever increasing electrical energy demand. Industrial and economic development in rural India is impeded by inadequate, erratic and unreliable grid supply. This has resulted in underperformance of small-scale manufacturing and service industries. Dependency on fossil fuel-based sources as an alternative increases the operation costs and carbon emissions. Migration to cleaner energy ensures sustainable solution and addresses the issues of depleting fossil fuels, global warming and environmental hazards. In this regard, hybrid renewable energy systems have gained wide acceptance as optimum solution. Hence, authors have optimally designed hybrid energy system for power deprived rural Indian villages. Authors have heeded to the vital element of incremental load growth over years while designing the microgrid to sustain the increasing load demand of emerging economy of developing country. HOMER Pro Software is utilized to accomplish system size optimization and authors have gained comprehensive insights into techno-financial feasibility for different dispatch strategies of the proposed energy system. The levelized cost of electricity of the optimal off-grid system catering to multiyear incremental load growth is 0.14$/kWh indicating that proposed system is promising in terms of commercial efficacy. The study performs a detailed analysis of the results obtained during different phases of the project to ensure robustness and supply continuity of the proposed system. The paper also includes comparison of the carbon footprint in the proposed system with that of existing system.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70226621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Novel designs of thermoelectric generator for automotive waste heat recovery: A review 汽车余热回收用热电发电机的新设计综述
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022042
Tan Nguyen Tien, Q. K. Vu, Vinh Nguyen Duy
{"title":"Novel designs of thermoelectric generator for automotive waste heat recovery: A review","authors":"Tan Nguyen Tien, Q. K. Vu, Vinh Nguyen Duy","doi":"10.3934/energy.2022042","DOIUrl":"https://doi.org/10.3934/energy.2022042","url":null,"abstract":"Many worldwide scientists have concentrated on using waste heat recovery technology in automotive applications because of increasingly strict fuel consumption. The thermoelectric generator (TEG) has garnered significant interest in the automobile sector as a viable waste heat recovery solution over the past several decades. A short survey of thermoelectric materials and heat exchangers for TEG systems is initially presented in this paper. To overcome the heat exchanger's current shortcomings, some previous studies designed a variety of the heat exchanger geometry of the TEG system. They suggested concentric cylindrical TEG system utilizes an annular thermoelectric module instead of the traditional square-shaped one. It uses the heat pipe's benefits to improve radial heat transmission. A comparison of the water-inside and gas-inside arrangements indicated that the water-inside concentric cylindrical TEG system provided a greater power output in our simulations to test the performance of the proposed system.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70227417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-objective real-time integrated solar-wind-thermal power dispatch by using meta-heuristic technique 基于元启发式技术的多目标实时集成太阳能-风-热发电调度
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022043
Sunimerjit Kaur, Y. S. Brar, J. S. Dhillon
{"title":"Multi-objective real-time integrated solar-wind-thermal power dispatch by using meta-heuristic technique","authors":"Sunimerjit Kaur, Y. S. Brar, J. S. Dhillon","doi":"10.3934/energy.2022043","DOIUrl":"https://doi.org/10.3934/energy.2022043","url":null,"abstract":"The elevated demand for electrical power, expeditious expenditure of fossil fuels, and degradation of the environment because of power generation have renewed attentiveness to renewable energy resources (RER). The rapid augmentation of RER increases the convolutions in leveling the demand and generation of electrical power. In this paper, an elaborated $ alpha $-constrained simplex method (ACSM) is recommended for multi-objective power dispatch problems. This methodology is devised after synthesizing the non-linear simplex method (SM) with the $ alpha $-constrained method (ACM) and the evolutionary method (EM). ACSM can transfigure an optimization technique for the constrained problems by reinstating standard juxtapositions with $ alpha $-level collations. The insertion of mutations and multi-simplexes can explore the periphery of the workable zone. It can also manage the fastness of convergence and therefore, the high precision solution can be obtained. A real-time multi-objective coordinated solar-wind-thermal power scheduling problem is framed. Two conflicting objectives (operating cost and emission) are satisfied. The case studies are carried out for Muppandal (Tamil Nadu), Jaisalmer (Rajasthan), and Okha (Gujarat), India. The annual solar and wind data are analyzed by using Normal Distribution and Weibull Distribution Density Factor, respectively. The presented technique is inspected on numerous archetype functions and systems. The results depict the prevalence of ACSM over particle swarm optimization (PSO), simplex method with mutations (SMM), SM, and EM.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70228298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of internal combustion engines powered by renewable energy based on ethanol fuel and HCCI technology 基于乙醇燃料和HCCI技术的可再生能源内燃机研究进展
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022046
Thang Nguyen Minh, Hieu Pham Minh, Vinh Nguyen Duy
{"title":"A review of internal combustion engines powered by renewable energy based on ethanol fuel and HCCI technology","authors":"Thang Nguyen Minh, Hieu Pham Minh, Vinh Nguyen Duy","doi":"10.3934/energy.2022046","DOIUrl":"https://doi.org/10.3934/energy.2022046","url":null,"abstract":"In general, as compared to conventional combustion engines, the homogeneous charge compression ignition (HCCI) engine offers better fuel efficiency, NOx, and particulate matter emissions. The HCCI engine, on the other hand, is not connected to the spark plugs or the fuel injection system. This implies that the auto-ignition time and following combustion phase of the HCCI engine are not controlled directly. The HCCI engine will be confined to a short working range due to the cold start, high-pressure rate, combustion noise, and even knocking combustion. Biofuel innovation, such as ethanol-powered HCCI engines, has a lot of promise in today's car industry. As a result, efforts must be made to improve the distinctive characteristics of the engine by turning the engine settings to different ethanol mixtures. This study examines the aspects of ethanol-fueled HCCI engines utilizing homogenous charge preparation procedures. In addition, comparing HCCI engines to other advanced combustion engines revealed their increased importance and prospective consequences. Furthermore, the challenges of transitioning from conventional to HCCI engines are examined, along with potential answers for future upgrade approaches and control tactics.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70229869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical and experimental investigation for analyzing the temperature influence on the performance of photovoltaic module 温度对光伏组件性能影响的数值与实验研究
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022047
A. Mohammad, Wisam A. M. Al-Shohani
{"title":"Numerical and experimental investigation for analyzing the temperature influence on the performance of photovoltaic module","authors":"A. Mohammad, Wisam A. M. Al-Shohani","doi":"10.3934/energy.2022047","DOIUrl":"https://doi.org/10.3934/energy.2022047","url":null,"abstract":"The effect of temperature is considered a significant factor in controlling the output voltage of the photovoltaic (PV) module. In this work, a numerical analysis with an experimental demonstration were investigated to analyze the temperature effect on the performance of PV module. In the numerical part, the current-voltage I-V and power-voltage P-V curves of the PV module were simulated under the influence of various module temperature ranged from 25 to 65 ℃ as well as various solar radiation from 200 to 1000 W/m2. In addition, the variation of PV output electrical characteristics with a module temperature were performed to analyze the temperature coefficients of the PV module. Moreover, the experimental demonstration was performed to analyze performance of the PV module under the real weather conditions of Iraq. The numerical results conclude that the maximum power was recorded 165 W at 1000 W/m2 solar irradiance and 25 ℃ PV module temperature. Furthermore, the temperature coefficient was recorded a maximum value with output power about (−0.26) %/℃. Besides, the experimental results show that the maximum power was recorded 131.2 W at solar irradiance about 920 W/m2.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70229904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cost optimization and optimal sizing of standalone biomass/diesel generator/wind turbine/solar microgrid system 独立生物质/柴油发电机/风力涡轮机/太阳能微电网系统的成本优化和最佳尺寸
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022032
S. Prakash, P. Dhal
{"title":"Cost optimization and optimal sizing of standalone biomass/diesel generator/wind turbine/solar microgrid system","authors":"S. Prakash, P. Dhal","doi":"10.3934/energy.2022032","DOIUrl":"https://doi.org/10.3934/energy.2022032","url":null,"abstract":"Renewable energy has grown in popularity in recent years as a solution to combat the effects of pollution on the environment. The main purpose of this research is to design a microgrid system in Lakshadweep Island to determine the cost and dependability of a solar photovoltaic system that is combined with biomass, wind energy and diesel generator. Two types of hybrid systems like solar/biomass generator/wind turbine and Solar/diesel generator/biomass are investigated to get an optimal solution using HOMER Pro software. The hybrid microgrid system is optimized with low cost of energy (COE) and less environmental pollution. The reliability indice like unmet load is determined for each case to access the performance of the system. The influence of different Weibull shape parameter in solar/biomass generator/wind turbine hybrid system with sensitive variation of solar irradiation and wind speed are discussed. The scheduling of diesel generator in solar/diesel generator/biomass generator with various scenarios are analyzed based on minimum net present cost. The optimization results shows that the solar/diesel generator/biomass hybrid system has low net present cost of 432513 $ and cost of energy of 0.215 $/kWh as compared to solar/biomass/wind turbine for the selected site location. The proposed solar/diesel generator/biomass system produces emission of 7506 kg/yr. The emission produced in Lakshadweep Island using the proposed model is reduced since this Island currently produces electricity mainly with diesel generators. The optimal sizing of various components in microgrid system is performed to get the optimal solution.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70226384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of PV solar energy system operations and applications in Dhofar Oman 阿曼佐法尔光伏太阳能系统运行与应用综述
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022039
Fadhil Khadoum Alhousni, F. Ismail, P. Okonkwo, Hassan Mohamed, Bright O. Okonkwo, Omar A. Al-Shahri
{"title":"A review of PV solar energy system operations and applications in Dhofar Oman","authors":"Fadhil Khadoum Alhousni, F. Ismail, P. Okonkwo, Hassan Mohamed, Bright O. Okonkwo, Omar A. Al-Shahri","doi":"10.3934/energy.2022039","DOIUrl":"https://doi.org/10.3934/energy.2022039","url":null,"abstract":"Energy is seen as one of the most determinant factors for a nation's economic development. The Sun is an incredible source of inexhaustible energy. The efficiency of the conversion and application of Photovoltaic (PV) systems is related to the PV module's electricity generation and the location's solar potentials. Thus, the solar parameters of a region are important for feasibility studies on the application of solar energy. Although solar energy is available everywhere in the world, countries closest to the equator receive the greatest solar radiation and have the highest potential for solar energy production and application. Dhofar in Salalah-Oman is one of the cities in Oman with high temperatures all year round. The city has been reported to exhibit a maximum solar flux of about 1360 w/m2 and a maximum accumulative solar flux of about 12,586,630 W/m2 in March. These interesting solar potentials motivated the call for investment in solar energy in the region as an alternative to other non-renewable energy sources such as fossil fuel-powered generators. As a consequence, several authors have reported on the application of different solar energy in the different cities in Oman, especially in remote areas and various results reported. Therefore, the present review highlighted the achievements reported on the availability of solar energy sources in different cities in Oman and the potential of solar energy as an alternative energy source in Dhofar. The paper has also reviewed different PV techniques and operating conditions with emphasis on the advanced control strategies used to enhance the efficiency and performance of the PV energy system. Applications of standalone and hybrid energy systems for in-house or remote power generation and consumption in Dhofar were discussed. It also focused on the relevance of global radiation data for the optimal application of PV systems in Dhofar. The future potential for the full application of solar systems in the region was mentioned and future work was recommended.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70226542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Experimental investigation and exergy and energy analysis of a forced convection solar fish dryer integrated with thermal energy storage 蓄热式强制对流太阳能鱼干机的实验研究及热能分析
IF 1.8
AIMS Energy Pub Date : 2022-01-01 DOI: 10.3934/energy.2022021
Dessie Tadele Embiale, D. G. Gunjo, Chandraprabu Venkatachalam, M. Parthiban
{"title":"Experimental investigation and exergy and energy analysis of a forced convection solar fish dryer integrated with thermal energy storage","authors":"Dessie Tadele Embiale, D. G. Gunjo, Chandraprabu Venkatachalam, M. Parthiban","doi":"10.3934/energy.2022021","DOIUrl":"https://doi.org/10.3934/energy.2022021","url":null,"abstract":"Drying is an effective means of reducing post-harvest losses which increases the shelf life of products by reducing their moisture content to a safe storage level. An indirect mode forced convection solar dryer integrated with thermal energy storage was designed, developed and experimentally tested by drying fish. The components of the dryer are a double pass solar air heater, a paraffin wax-based shell and tube for latent heat thermal energy storage, a drying chamber and a blower. A maximum temperature of 69 ℃ was obtained at the outlet of the solar air heater, and the energy and exergy efficiencies were 25% and 1.5%, respectively. The latent heat storage reduces the fluctuations in the outlet temperature of the solar air heater and extends the drying process for two extra hours per day. The average energy and exergy efficiencies of the energy storage were 41.9% and 15.6%, respectively, whereas average energy and exergy efficiencies of the drying chamber were 35% and 52%, respectively. Moreover, 5 kg of fresh fish was effectively dried in the dryer within 21 hrs, reducing the moisture content of the fish from 75% to 12.5% by removing 3.57 kg of moisture. The specific energy consumption of the dryer was 7.3 kWh per kilogram of moisture, and the power consumed by the blower was 0.6 kWh per kilogram of moisture, which is 8.3% of the total energy consumption. The remaining 91.7% of the energy is harvested from the sun, and the overall efficiency of the drying system is 9.4%.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70226550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信