温度对光伏组件性能影响的数值与实验研究

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2022-01-01 DOI:10.3934/energy.2022047
A. Mohammad, Wisam A. M. Al-Shohani
{"title":"温度对光伏组件性能影响的数值与实验研究","authors":"A. Mohammad, Wisam A. M. Al-Shohani","doi":"10.3934/energy.2022047","DOIUrl":null,"url":null,"abstract":"The effect of temperature is considered a significant factor in controlling the output voltage of the photovoltaic (PV) module. In this work, a numerical analysis with an experimental demonstration were investigated to analyze the temperature effect on the performance of PV module. In the numerical part, the current-voltage I-V and power-voltage P-V curves of the PV module were simulated under the influence of various module temperature ranged from 25 to 65 ℃ as well as various solar radiation from 200 to 1000 W/m2. In addition, the variation of PV output electrical characteristics with a module temperature were performed to analyze the temperature coefficients of the PV module. Moreover, the experimental demonstration was performed to analyze performance of the PV module under the real weather conditions of Iraq. The numerical results conclude that the maximum power was recorded 165 W at 1000 W/m2 solar irradiance and 25 ℃ PV module temperature. Furthermore, the temperature coefficient was recorded a maximum value with output power about (−0.26) %/℃. Besides, the experimental results show that the maximum power was recorded 131.2 W at solar irradiance about 920 W/m2.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical and experimental investigation for analyzing the temperature influence on the performance of photovoltaic module\",\"authors\":\"A. Mohammad, Wisam A. M. Al-Shohani\",\"doi\":\"10.3934/energy.2022047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of temperature is considered a significant factor in controlling the output voltage of the photovoltaic (PV) module. In this work, a numerical analysis with an experimental demonstration were investigated to analyze the temperature effect on the performance of PV module. In the numerical part, the current-voltage I-V and power-voltage P-V curves of the PV module were simulated under the influence of various module temperature ranged from 25 to 65 ℃ as well as various solar radiation from 200 to 1000 W/m2. In addition, the variation of PV output electrical characteristics with a module temperature were performed to analyze the temperature coefficients of the PV module. Moreover, the experimental demonstration was performed to analyze performance of the PV module under the real weather conditions of Iraq. The numerical results conclude that the maximum power was recorded 165 W at 1000 W/m2 solar irradiance and 25 ℃ PV module temperature. Furthermore, the temperature coefficient was recorded a maximum value with output power about (−0.26) %/℃. Besides, the experimental results show that the maximum power was recorded 131.2 W at solar irradiance about 920 W/m2.\",\"PeriodicalId\":45696,\"journal\":{\"name\":\"AIMS Energy\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/energy.2022047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

温度的影响被认为是控制光伏(PV)组件输出电压的重要因素。本文采用数值分析和实验验证相结合的方法,分析了温度对光伏组件性能的影响。在数值部分,模拟了光伏组件在25 ~ 65℃温度和200 ~ 1000 W/m2太阳辐射影响下的电流-电压I-V和功率-电压P-V曲线。此外,通过PV输出电特性随组件温度的变化,分析了PV组件的温度系数。并进行了试验演示,分析了该组件在伊拉克实际天气条件下的性能。结果表明,在太阳辐照度为1000 W/m2,光伏组件温度为25℃时,最大功率为165 W。温度系数在输出功率约为(−0.26)%/℃时达到最大值。实验结果表明,在太阳辐照度为920 W/m2时,最大功率为131.2 W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and experimental investigation for analyzing the temperature influence on the performance of photovoltaic module
The effect of temperature is considered a significant factor in controlling the output voltage of the photovoltaic (PV) module. In this work, a numerical analysis with an experimental demonstration were investigated to analyze the temperature effect on the performance of PV module. In the numerical part, the current-voltage I-V and power-voltage P-V curves of the PV module were simulated under the influence of various module temperature ranged from 25 to 65 ℃ as well as various solar radiation from 200 to 1000 W/m2. In addition, the variation of PV output electrical characteristics with a module temperature were performed to analyze the temperature coefficients of the PV module. Moreover, the experimental demonstration was performed to analyze performance of the PV module under the real weather conditions of Iraq. The numerical results conclude that the maximum power was recorded 165 W at 1000 W/m2 solar irradiance and 25 ℃ PV module temperature. Furthermore, the temperature coefficient was recorded a maximum value with output power about (−0.26) %/℃. Besides, the experimental results show that the maximum power was recorded 131.2 W at solar irradiance about 920 W/m2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信