{"title":"The Impact of Flexural/Torsional Coupling on the Stability of Symmetrical Laminated Plates","authors":"Hafid Mataich, Bouchta El Amrani","doi":"10.13052/ejcm2642-2085.3251","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3251","url":null,"abstract":"In this study, we will evaluate the effect of bending/torsion coupling on the buckling instability and free vibration behavior of symmetrical laminated plates. We will load these plates in-plane with bi-axial or uni-axial, uniform or non-uniform mechanical loads. To quantify this behavior, we’ll compare the results obtained with those of specially orthotropic symmetrical plates (where bending/torsion coupling is absent). A parametric study will be carried out by varying the plate’s aspect ratio, anisotropy ratio and/or lamination angle. The aim of these studies is to construct a planar loading margin for the plate while remaining elastically stable, and to determine a physically admissible limit where we can approximate the behavior of symmetrical laminates to that of specially orthotropic plates (easy to study). We will base ourselves on a Rayleigh-Ritz energy formulation of the problem because of the difficulty of finding closed-form solutions. Following validation of this formulation, a numerical survey of the results will be carried out to quantify the effect of bending/torsion coupling on the instability of this type of plate. Various conditions on the plate boundaries will be used.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":" 5","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139140755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Kevin, M. Akbar, Leonardo Gunawan, Darryl Khalid Aulia, Rizqy Agung, S. S. Rawikara, R. A. Sasongko, D. Widagdo
{"title":"Evaluation of Piezoelectric-based Composite for Actuator Application via FEM with Thermal Analogy","authors":"Alexander Kevin, M. Akbar, Leonardo Gunawan, Darryl Khalid Aulia, Rizqy Agung, S. S. Rawikara, R. A. Sasongko, D. Widagdo","doi":"10.13052/ejcm2642-2085.3253","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3253","url":null,"abstract":"In the present work, a new study on the piezoelectric-based structure by means of Finite Element Method (FEM) is conducted. Currently, the piezoelectric model in the FEM-based commercial software is only applicable via 2D plane stress and 3D solid elements. However, piezoelectric structures are usually manufactured as thin-walled structures, i.e., plates and disks. Therefore, it is more convenient to model a piezoelectric-based structure with 2D shell elements. In this study, FEM with a thermal analogy approach is implemented. Thermal coupling characteristics are utilised as the equivalent of electromechanical properties. Thermal analysis is much more established in FEM-based software; thus, applications with various types of elements are enabled. Therefore, the evaluation of piezoelectric structure via shell element with a thermal analogy approach could be performed. Static and dynamic analyses are conducted with experimental and numerical validations. As depicted in some details in this paper, the shell model with thermal analogy shows an excellent agreement with the 3D solid piezoelectric elements with insignificant variances, less than 0.3%.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":" 25","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139138222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenguo Xu, Ayush Maria, Kahina Chelli, Thibaut Dumouchel De Premare, Xabadin Bilbao, Christopher Petit, Robert Zoumboulis-Airey, Irene Moulitsas, Tom-Robin Teschner, Seemal Asif, Jun Li
{"title":"Vortex and Core Detection using Computer Vision and Machine Learning Methods","authors":"Zhenguo Xu, Ayush Maria, Kahina Chelli, Thibaut Dumouchel De Premare, Xabadin Bilbao, Christopher Petit, Robert Zoumboulis-Airey, Irene Moulitsas, Tom-Robin Teschner, Seemal Asif, Jun Li","doi":"10.13052/ejcm2642-2085.3252","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3252","url":null,"abstract":"The identification of vortices and cores is crucial for understanding airflow motion in aerodynamics. Currently, numerous methods in Computer Vision and Machine Learning exist for detecting vortices and cores. This research develops a comprehensive framework by combining classic Computer Vision and state-of-the-art Machine Learning techniques for vortex and core detection. It enhances a CNN-based method using Computer Vision algorithms for Feature Engineering and then adopts an Ensemble Learning approach for vortex core classification, through which false positives, false negatives, and computational costs are reduced. Specifically, four features, i.e., Contour Area, Aspect Ratio, Area Difference, and Moment Centre, are employed to identify vortex regions using YOLOv5s, followed by a hard voting classifier based on Random Forest, Adaptive Boosting, and Xtreme Gradient Boosting algorithms for vortex core detection. This novel approach differs from traditional Computer Vision approaches using mathematical variables and image features such as HAAR and SIFT for vortex core detection. The findings show that vortices are detected with a high degree of statistical confidence by a fine-tuned YOLOv5s model, and the integrated technique produces an accuracy score of 97.56% in detecting vortex cores conducted on a total of 133 images generated from a rotor blade NACA0012 simulation. Future work will focus on framework generalisation with a larger and more diverse dataset and intelligent threshold development for more efficient vortex and core detection.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":" 36","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139139580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed Saimi, Ismail Bensaid, Besma Khouani, Med Yassin Mazari, Ihab Eddine Houalef, Abdelmadjid Cheikh
{"title":"A Novel Differential Quadrature Galerkin Method for Dynamic and Stability Behaviour of Bi-directional Functionally Graded Porous Micro Beams","authors":"Ahmed Saimi, Ismail Bensaid, Besma Khouani, Med Yassin Mazari, Ihab Eddine Houalef, Abdelmadjid Cheikh","doi":"10.13052/ejcm2642-2085.3244","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3244","url":null,"abstract":"The free vibration and buckling behaviours of 2D-FG porous microbeams are explored in this paper utilizing the Quasi-3D beam deformation theory based on the modified couple stress theory and a Differential Quadrature Galerkin Method (DQGM) systematically, as a combination of the Differential Quadrature Method (DQM) and the semi-analytical Galerkin method, which has used to reduce computational cost for problems in dynamics. The governing equations are obtained using the Lagrange’s principle. The mass and stiffness matrices are calculated using the weighting coefficient matrices given by the differential quadrature (DQ) and Gauss-Lobatto quadrature rules. The matrices are expressed in a similar form to that of the Differential Quadrature Method by introducing an interpolation basis on the element boundary of the Galerkin method. The sampling points are determined by the Gauss-Lobatto node method. The influence of the thickness-to-material length scale parameter (MLSP) on the nondimensional natural frequencies and nondimensional critical buckling loads of 2D-FG porous microbeams are investigated, along with the effects of the boundary condition, aspect ratio and gradient index. The results are validated with literature to establish the accuracy of the procedure described. This work will provide a numerical basis for the design of FG microstructures in the field of micromechanics. These results can be applied to the engineering design of porous FG microstructures.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"38 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Static Mechanics and Dynamic Analysis and Control of Bridge Structures Under Multi-Load Coupling Effects","authors":"Ma Zhifang, Sun Zhuoyu, Yuan Yuan","doi":"10.13052/ejcm2642-2085.3243","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3243","url":null,"abstract":"With the rapid development and wide application of large-span bridges, the problem of dynamics and safety control of bridge structures under multiple loads is becoming more and more prominent. To realize the dynamic analysis and mechanical control of the girder structure, this paper designs a new type of magnetorheological (MR) mechanical damper based on the mechanistic analytical method and establishes a coupled dynamics model of the vehicle-rail-MR mechanical damper. The simulation and validation results show that the error between the semi-analytical method and the finite element theory calculation results is only 1.0%, while the kinetic simulation is consistent with the measured frequency domain trend. The analytical results show that: After applying MR mechanical damper for mechanical control, the moment live load and shear values of side spans were reduced by 27.68% and 10.79%, respectively; and the maximum moment and shear values generated at the center pivot were reduced by 28.19% and 10.81%, respectively. After applying the mechanical damper, the stress distribution of the cable-stayed bridge is more balanced, and the maximum diagonal stress of the overall structure is reduced from 3.8 MPa to 2.9 MPa. After safety control, the root-mean-square (RMS) value of the mid-span displacement amplitude was reduced by 59.32% and the maximum value was reduced by 11.46%, which improved the stability of the girder dynamics. After mechanical control, the dynamic acceleration response of the beam within the span decreased between 2 and 8 seconds and increased between 8 and 10 seconds. The overall response fluctuated around −5 m/s2 with a relatively smooth trend.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"39 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the Mechanical Characteristics of Tunnels Under the Coupling Effect of Submarine Active Faults and Ground Vibrations","authors":"Sun Zhuoyu, Ma Zhifang, Hou Yaolong","doi":"10.13052/ejcm2642-2085.3242","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3242","url":null,"abstract":"With the rapid development of modern transportation construction, the construction of cross-harbor tunnels has solved the problem of traffic connection between cross-straits, bays and islands. The construction of sub-sea tunnels has technical difficulties such as high difficulty of marine geological survey, close hydraulic connection between strata and seawater, and more developed adverse geology. Based on this, this paper studies the mechanical characteristics of the submarine tunnel under seismic action at the active fault. Firstly, the mechanical model of the universal fault interface is established, and the calculation model of the fault interface is theoretically derived by the method of vibration mechanics, and the influence of the change of the strength of the contact surface and the stiffness of the surrounding rock on both sides of the fault on the transfer coefficient is obtained. Secondly, based on the ground motion input method of two-dimensional homogeneous half-space field, the relevant program of viscoelastic artificial boundary ground motion input is written by MATLAB program, which lays the foundation and premise of load input for mechanical response calculation. Finally, the outcomes of the tunnel parameters and the interplay between the tunnel and the surrounding rock on the cracking of the tunnel lining shape and the mechanical response of the cross-fault sub-sea tunnel underneath seismic motion are mentioned, and it is concluded that the increase in seismic intensity for different seismic intensities under the sea floor has an essentially constant proportion to the increase in acceleration of the seismic response; the seepage effect under the sea floor for the tunnel lining structure reduces the seismic response displacement, velocity and The seabed seepage for the tunnel lining structure reduces the peak seismic response displacement, velocity and acceleration by about 20–35%.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"39 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristic Analysis of the Response Mechanics of Asymmetric High-rise Buildings Subjected to Transverse Wind Loads Considering Second-order Vibration Patterns","authors":"Xin Zuo, Die Liu, Ze Xu","doi":"10.13052/ejcm2642-2085.3241","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3241","url":null,"abstract":"The share of high-rise structures in China is growing as a response to the ordinary human wishes of today, such as high-rise accommodations and high-altitude enjoyment facilities. Because of the different traits of high-rise buildings, it is critical to find out about the load response and mechanical traits of high-rise buildings. In this paper, first of all, from the aerodynamic modeling experimental methods on the basis of three-dimensional wind-induced vibration of high-rise structures, high-rise buildings, the side-strain combination of the proposed simple and calculation formula, the basic characteristics of three-dimensional wind-induced vibration of a systematic study. The modal pushover evaluation technique is then used to analyze the elasticity and plasticity of the high-rise structure, and it is counseled that the higher-order vibration sample has a vital effect on the seismic resistance of the structure. Finally, a calculation principle of the mechanical response of high-rise construction subjected to transverse wind load thinking about the second-order vibration mode is given, and the outcomes exhibit that the Contribution of the second-order vibration mode to the dynamic displacement in the winding course of high-rise construction is inside 2%. However, the most Contribution to the acceleration response can attain 18%.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"38 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135775783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Post-earthquake Dynamics of Bridge Structures using New Particle Dampers – A Case Study of the Nujiang River Bridge","authors":"Gong Lei, Tang Miao","doi":"10.13052/ejcm2642-2085.3233","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3233","url":null,"abstract":"In this study, a new mechanical model, named particle damping mechanics model (PU_SPD), is proposed to study the damping problem of bridge structures. The model takes the Nujiang River Bridge as a case study, and explores the mechanism of force action by analyzing the time domain vibration characteristics and frequency domain of the excitation force, vibrating body (bridge structural properties) and particle damping. the PU_SPD model and its calculation method can intuitively and scientifically describe the damping dissipation characteristics of a vibrating beam under the action of particle damping, avoiding the tedious process of parameter iterative solution and improving the computational efficiency. In addition, the damping influence law of particle damping on the beam structure is derived through the analysis of transfer function and damping level. The study also proposes an optimal design method for PU_SPD damping parameters under dynamic loading of the bridge, and its performance parameters are analyzed and verified, and compared and validated with the time-domain analysis method. The results show that the PU_SPD mechanical model based on time-frequency domain analysis can intuitively reflect the damping dissipation mechanics with high accuracy, clear solution process and reasonable and accurate parameter optimization analysis method. PU_SPD has a wide frequency range, good effect and stability, and has a good prospect of application in engineering vibration and noise reduction.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135344486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Field Test and Structural Stability Analysis of Multi-stage Slope Based on Seepage Coupling Theory","authors":"Lu Hao, Li Qing, Li Peijun","doi":"10.13052/ejcm2642-2085.3232","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3232","url":null,"abstract":"This study takes the slope engineering of the Guangdong North Expressway as the background, and studies the impact of rainfall infiltration on the stability of high slopes through on-site monitoring, data analysis, and model construction. Firstly, based on BC theory, the mechanical calculation model of landslide rainfall is established, and the mechanical formula of slope mechanical properties and Factor of safety considering rainfall process and rainfall infiltration process is derived. Then, by constructing a Fluid–structure interaction numerical calculation model considering the seepage characteristics and mechanical state evolution of the slope, the movement of pore water in the slope under different rainfall intensities and the evolution of the mechanical state and displacement characteristics of the slope were studied. Research has found that the mechanical and numerical calculation models in this article are highly consistent with the actual site conditions, and there may be two potential sliding surfaces in the K738+995 section. The potential sliding surface of K738+910 section is located at a depth of 7 m below the first level platform and 3 m below the third level platform; There may be two potential sliding surfaces in K738+658 section, one is located at the interface between silty clay and sandy clay (9 m below the top of cutting), and the other is mainly located at the interface between sandy clay and completely weathered andesite porphyrite; The surface layer of the slope is silty clay and sandy clay, and the underlying layer is fully strongly weathered andesite porphyrite and moderately weathered dacite. Completely strongly weathered andesite porphyrite is soft, easy to soften and disintegrate when encountering water, and joint fissures are developed. The surface of some cracks is contaminated with iron and manganese, resulting in uneven weathering. The rock is relatively soft and the rock mass is broken. Due to the recent continuous heavy rainfall, the water content of the surface soil of the slope gradually increases and tends to saturation, increasing the self-weight of the slope soil.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135344687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Mechanical Characteristics and Load-bearing Behavior of Nodes of Steel Fiber Concrete Arch Bridges","authors":"Liu Kailiang, Wang Sen","doi":"10.13052/ejcm2642-2085.3231","DOIUrl":"https://doi.org/10.13052/ejcm2642-2085.3231","url":null,"abstract":"Steel fiber reinforced concrete (SFRC) is a new type of composite material formed by dispersing discontinuous short steel fibers in a uniform and random direction throughout the concrete, which has excellent properties of tensile, shear and high toughness, can effectively improve the load-bearing capacity of arch bridges. In this paper, the mechanics of SFRP in the nodal structure of an arch bridge is initially explored by means of indoor model tests and numerical simulation studies. The results show that the maximum principal tensile stress occurs at the intersection of arch rib, arch foot and tie beam, and the maximum principal compressive stress occurs at the connection between arch rib and arch seat, which should be considered in the design. In this paper, we hope to understand the characteristics of the force and bearing capacity of this type of structure to provide a reference for similar projects.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135344489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}