Vortex and Core Detection using Computer Vision and Machine Learning Methods

IF 1.5 Q3 MECHANICS
Zhenguo Xu, Ayush Maria, Kahina Chelli, Thibaut Dumouchel De Premare, Xabadin Bilbao, Christopher Petit, Robert Zoumboulis-Airey, Irene Moulitsas, Tom-Robin Teschner, Seemal Asif, Jun Li
{"title":"Vortex and Core Detection using Computer Vision and Machine Learning Methods","authors":"Zhenguo Xu, Ayush Maria, Kahina Chelli, Thibaut Dumouchel De Premare, Xabadin Bilbao, Christopher Petit, Robert Zoumboulis-Airey, Irene Moulitsas, Tom-Robin Teschner, Seemal Asif, Jun Li","doi":"10.13052/ejcm2642-2085.3252","DOIUrl":null,"url":null,"abstract":"The identification of vortices and cores is crucial for understanding airflow motion in aerodynamics. Currently, numerous methods in Computer Vision and Machine Learning exist for detecting vortices and cores. This research develops a comprehensive framework by combining classic Computer Vision and state-of-the-art Machine Learning techniques for vortex and core detection. It enhances a CNN-based method using Computer Vision algorithms for Feature Engineering and then adopts an Ensemble Learning approach for vortex core classification, through which false positives, false negatives, and computational costs are reduced. Specifically, four features, i.e., Contour Area, Aspect Ratio, Area Difference, and Moment Centre, are employed to identify vortex regions using YOLOv5s, followed by a hard voting classifier based on Random Forest, Adaptive Boosting, and Xtreme Gradient Boosting algorithms for vortex core detection. This novel approach differs from traditional Computer Vision approaches using mathematical variables and image features such as HAAR and SIFT for vortex core detection. The findings show that vortices are detected with a high degree of statistical confidence by a fine-tuned YOLOv5s model, and the integrated technique produces an accuracy score of 97.56% in detecting vortex cores conducted on a total of 133 images generated from a rotor blade NACA0012 simulation. Future work will focus on framework generalisation with a larger and more diverse dataset and intelligent threshold development for more efficient vortex and core detection.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.3252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of vortices and cores is crucial for understanding airflow motion in aerodynamics. Currently, numerous methods in Computer Vision and Machine Learning exist for detecting vortices and cores. This research develops a comprehensive framework by combining classic Computer Vision and state-of-the-art Machine Learning techniques for vortex and core detection. It enhances a CNN-based method using Computer Vision algorithms for Feature Engineering and then adopts an Ensemble Learning approach for vortex core classification, through which false positives, false negatives, and computational costs are reduced. Specifically, four features, i.e., Contour Area, Aspect Ratio, Area Difference, and Moment Centre, are employed to identify vortex regions using YOLOv5s, followed by a hard voting classifier based on Random Forest, Adaptive Boosting, and Xtreme Gradient Boosting algorithms for vortex core detection. This novel approach differs from traditional Computer Vision approaches using mathematical variables and image features such as HAAR and SIFT for vortex core detection. The findings show that vortices are detected with a high degree of statistical confidence by a fine-tuned YOLOv5s model, and the integrated technique produces an accuracy score of 97.56% in detecting vortex cores conducted on a total of 133 images generated from a rotor blade NACA0012 simulation. Future work will focus on framework generalisation with a larger and more diverse dataset and intelligent threshold development for more efficient vortex and core detection.
利用计算机视觉和机器学习方法进行涡流和核心检测
涡流和核心的识别对于理解空气动力学中的气流运动至关重要。目前,计算机视觉和机器学习领域有许多检测涡流和核心的方法。本研究结合经典的计算机视觉技术和最先进的机器学习技术,为涡流和核心检测开发了一个综合框架。它利用计算机视觉算法增强了基于 CNN 的特征工程方法,然后采用集合学习方法进行涡核分类,从而降低了误报、误判和计算成本。具体地说,利用 YOLOv5s 识别涡流区域时采用了四个特征,即轮廓面积、纵横比、面积差和力矩中心,然后采用基于随机森林、自适应提升和 Xtreme 梯度提升算法的硬投票分类器进行涡核检测。这种新方法不同于使用数学变量和图像特征(如 HAAR 和 SIFT)进行涡核检测的传统计算机视觉方法。研究结果表明,经过微调的 YOLOv5s 模型能以高度的统计置信度检测到涡流,而且在对转子叶片 NACA0012 仿真生成的总共 133 幅图像进行涡核检测时,该集成技术的准确率高达 97.56%。未来的工作重点是利用更大、更多样化的数据集和智能阈值开发框架的通用性,以实现更高效的涡流和核心检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信