Journal of Micro and Nano-Manufacturing最新文献

筛选
英文 中文
Effect of Inherently Porous Structure Produced by Metal Fused Filament Fabrication on the Tribological Behavior of Lubricated Steel-Steel Contact 金属熔丝加工产生的固有多孔结构对润滑钢-钢接触摩擦学性能的影响
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-85584
Rui Liu, A. Greeley, Shuhuan Zhang, D. Cormier, Patricia Iglesias Victoria
{"title":"Effect of Inherently Porous Structure Produced by Metal Fused Filament Fabrication on the Tribological Behavior of Lubricated Steel-Steel Contact","authors":"Rui Liu, A. Greeley, Shuhuan Zhang, D. Cormier, Patricia Iglesias Victoria","doi":"10.1115/msec2022-85584","DOIUrl":"https://doi.org/10.1115/msec2022-85584","url":null,"abstract":"\u0000 By introducing local depressions, as small reservoirs for lubricants and wear debris, on a flat surface, the surface texture has been proven to positively affect the friction and wear behavior of lubricated sliding surfaces. However, the effectiveness of the surface texture diminishes and disappears eventually as wear develops at the contact interface. In order to achieve a longer-lasting beneficial effect on the sliding surface, this work develops an approach to print an inherently porous structure up to a certain depth beneath the contact surface to retain the benefits associated with surface texture. A test structure was created from 17-4 PH stainless steel using a metal fused filament fabrication system. The performance of the printed porous structure was evaluated using a steel ball in a ball-on-flat reciprocating tribometer under lubricated conditions with mineral oil. By comparing with the solid sample, it was found that the printed structure with inherent porosity improved the tribological performance by reducing the friction up to 20% and the wear rate up to 90%. The experimental results also indicate that the effectiveness of the printed texture is strongly correlated to the shape and the distribution of the pores on the wear track, which requires further research in the following studies.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73937745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Polylactic Acid Filament With Biodegradable Hemp Fiber Infused During Additive Manufacturing Process 生物可降解大麻纤维增材制造工艺中聚乳酸长丝的表征
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-85176
M. Hanson, Che-Hao Yang
{"title":"Characterization of Polylactic Acid Filament With Biodegradable Hemp Fiber Infused During Additive Manufacturing Process","authors":"M. Hanson, Che-Hao Yang","doi":"10.1115/msec2022-85176","DOIUrl":"https://doi.org/10.1115/msec2022-85176","url":null,"abstract":"\u0000 Fused Filament Fabrication (FFF) is one of the common methods among the Additive Manufacturing (AM) processes. In this study, hemp fiber, a sustainable, and fast degraded material introduced and mixed with fresh Polylactic Acid (PLA) filament with 3 wt%, 7.5 wt%, and 10 wt% to improve the drawbacks of pure PLA filament and sustain its required properties. The results from the fatigue testing of pure PLA, and various hemp-fiber infused PLA indicated that increasing the wt% content of a hemp fiber infused PLA specimen at a certain point does increase the ultimate bending stress as well as the overall fatigue life of a pure PLA specimen. The 10 wt% hemp fiber specimens provided a 7.32% increase in the mean ultimate flexural strength over pure PLA. The mean of Young’s modulus also increased by 10.65% for the 10 wt% hemp fiber specimen and by 23.05% for the 7.5 wt% hemp fiber specimen over PLA. The 10 wt% hemp fiber specimens also provided a 4.05% increase in fatigue life over PLA. The 3 wt% did not provide a significant improvement in the study. These findings provide insight into the AM processes and lead to the development of environment-friendly composites in the industries.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74315907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Separation Process Comparison of Hydrogel Film and PTFE Film in Vat Photopolymerization 还原光聚合中水凝胶膜与聚四氟乙烯膜分离工艺的比较
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-85380
F. Yang, Aamer A. Kazi, Caleb Liu, Bruce Tai
{"title":"Separation Process Comparison of Hydrogel Film and PTFE Film in Vat Photopolymerization","authors":"F. Yang, Aamer A. Kazi, Caleb Liu, Bruce Tai","doi":"10.1115/msec2022-85380","DOIUrl":"https://doi.org/10.1115/msec2022-85380","url":null,"abstract":"\u0000 In constrained surface vat photopolymerization, the separation process between a newly printed layer and the vat film has long been a limiting factor for printing speed and feature size. This paper aims to compare the performance of a hydrogel film and a conventionally used polytetrafluoroethylene (PTFE) in terms of separation forces, vertical separation distances, and dimensional accuracies of the printed parts. PTFE is commonly adopted because of its low surface energy and thus low separation force, while the hydrogel film is hypothetically effective because of its repelling nature to the non-polar characteristic in most photopolymers. A custom-designed building platform with an integrated sensor is used to continuously sample the force at 1,000Hz with 0.1N resolution. The separation distance is calculated based on the ascending and descending force profiles. The results show a 26% reduction in separation forces and a 60% reduction in vertical separation distances, with 95% statistical significance when comparing the hydrogel film to the PTFE film. The dimensional accuracies of produced parts in both films are similar.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75558854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MSEC2022 Front Matter MSEC2022前沿问题
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-fm1
{"title":"MSEC2022 Front Matter","authors":"","doi":"10.1115/msec2022-fm1","DOIUrl":"https://doi.org/10.1115/msec2022-fm1","url":null,"abstract":"\u0000 The front matter for this proceedings is available by clicking on the PDF icon.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75727763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study on the Effect of Nozzle Geometrical Parameters on Supersonic Cold Spraying of Droplets 喷嘴几何参数对液滴超音速冷喷涂影响的研究
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-85703
Semih Akin, Puyuan Wu, Chandra Nath, Jun Chen, M. Jun
{"title":"A Study on the Effect of Nozzle Geometrical Parameters on Supersonic Cold Spraying of Droplets","authors":"Semih Akin, Puyuan Wu, Chandra Nath, Jun Chen, M. Jun","doi":"10.1115/msec2022-85703","DOIUrl":"https://doi.org/10.1115/msec2022-85703","url":null,"abstract":"\u0000 Supersonic cold spraying of droplets containing functional nanomaterials is of particular interest in advanced thin-film coating, that enabling high-adhesion strength particle deposition. In this method, coating occurs when the particles are accelerated to supersonic velocities in a converging-diverging nozzle, and then impact onto a target surface. Here, the optimum design of the nozzle is essential to deal with low-inertia particles like droplets. In particular, nozzle geometrical parameters (i.e., throat diameter, exit diameter, divergent length) determine droplets’ acceleration and deposition characteristics under supersonic flow conditions. To this end, we thoroughly investigate the influence of nozzle geometrical parameters on droplets acceleration by numerical modeling followed by experimental validation, and a case study on surface coating application. Two-phase flow modeling was used to predict droplets’ behavior in continuous gas flow for different nozzle configurations. The results show that the nozzle expansion ratio — a function of throat and exit diameters — has a significant influence on droplet velocity, followed by divergent length. In particular, to correctly accelerate low-inertia liquid droplets, optimum nozzle expansion ratio for an axisymmetric convergent-divergent nozzle is found to be in a range of 1.5–2.5 for various sets of parameters, which is different than the recommended expansion ratio (i.e., 5–9) for cold spraying of micro-scale metal particles. The findings can help determine the ideal design of a supersonic nozzle to minimize turbulent velocity fluctuation and shock wave formation that in turn assist to effectively spray low-inertia particles like micro-scale droplets. Based on the simulation results, an optimal design of supersonic nozzle is selected and prototyped for the experimental studies. Numerical modeling results are validated by particle image velocimetry (PIV) measurements. Moreover, coating experiments confirm the adaptability of the optimized nozzle for supersonic cold spraying of droplets containing nanoparticles, which thereby has the potential for rapid production of advanced thin films.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77380463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Welding Method for Repairing Surface Defects of Large-Type Rotary Machinery Based on Line Structured Light Detection 基于线结构光检测的大型旋转机械表面缺陷修复新方法
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-85527
Hao Fu, Hong Lu, Yongquan Zhang, Zidong Wu, He Huang, Shijie Liu, Shaojun Wang
{"title":"A Novel Welding Method for Repairing Surface Defects of Large-Type Rotary Machinery Based on Line Structured Light Detection","authors":"Hao Fu, Hong Lu, Yongquan Zhang, Zidong Wu, He Huang, Shijie Liu, Shaojun Wang","doi":"10.1115/msec2022-85527","DOIUrl":"https://doi.org/10.1115/msec2022-85527","url":null,"abstract":"\u0000 Large-type rotary machinery is the core components of national major projects which is widely used aviation, electric power, metallurgy, energy and construction machinery industries. Surface defects of Large-type rotary machinery such as cracks and pits are usually processed into groove with a certain shape first, and then the processed groove is repaired by manual welding. This manual welding repair method has a low level of automation, and the repair quality of the groove is difficult to guarantee. Therefore, this paper proposes a novel welding method for repairing surface defects of Large-type rotary machinery which uses the Kollmorgen Joint Modular Robot to complete the welding repair of the processed groove. Firstly, the groove point cloud data collected by Line structured light sensor is processed by the designed algorithm to obtain the contour characteristics of the groove. Then, the arrangement of welding pass is completed based on contour characteristics of the groove. Finally, the trajectory of the welding robot is determined by the position of welding pass. The planned trajectory verification is completed on the simulation experiment platform and the result shows the accuracy and reliability of the planned trajectory which has certain theoretical and practical significance for realizing the automation of on-site maintenance of Large-type rotary machinery.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84426616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Iterative Learning Control to Improve the Accuracy of Desktop Fused Deposition Modeling Printers: An Experimental Case Study 使用迭代学习控制提高台式熔融沉积建模打印机的精度:一个实验案例研究
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-78324
Lawrence W. Funke, Matthew N. Opara
{"title":"Using Iterative Learning Control to Improve the Accuracy of Desktop Fused Deposition Modeling Printers: An Experimental Case Study","authors":"Lawrence W. Funke, Matthew N. Opara","doi":"10.1115/msec2022-78324","DOIUrl":"https://doi.org/10.1115/msec2022-78324","url":null,"abstract":"\u0000 Additive manufacturing (AM) sits poised to make a large impact on the manufacturing sector. Fused deposition modeling (FDM), a type of AM, while versatile, and increasingly appearing in full production systems, has performance limitations in certain geometries, such as arcs and holes. This is especially true for the desktop setups common in College Maker Spaces and other prototyping environments. For these use cases, it is critical to obtain accurate parts quickly, yet often difficult, diminishing the value of using FDM, whether it be to prototype new designs, make final parts, or anything in between. Iterative Learning Control (ILC) has been applied to robot control, plastic extrusion, and other similar processes where disturbances to a system are present and relatively constant, but difficult to model and correct. Since desktop printers perform repetitive tasks subject to nearly constant disturbances that induce inaccuracies, a natural research question arises: can ILC be used to allow desktop printers to learn these inaccuracies and account for them, allowing such printers to create more accurate and useful parts for the average prototyping user?\u0000 Details on the printer, a LulzBot Taz 6, and the scanner, an Einscan 3D Scanner, being used to answer this question are first presented with some baseline data to establish the scanner’s nominal accuracy. Subsequently, a simple bounding box approach was developed and tested where only the part’s length, width, and height were monitored and adjusted. This approach determined an error metric for a scalene triangular prism by determining the length, width, and height of a box that bounds the shape. The ILC algorithm used this error metric to generate a new file to print for the next iteration, thus creating parts that became more and more accurate. While this approach exhibited some success, it cannot account for larger, more common issues such as warping (where shrinking occurs as the plastic cools over time causing bending or bowing in the part), or a hole being geometrically inaccurate compared to the desired diameter. To address these concerns, a grid approach was developed where the cardinal dimensions had a grid overlaid so that points along each dimension could be checked and adjusted in subsequent prints to account for such issues. This approach was applied to rectangular bars with relative success. The overall dimensional accuracy (e.g. length, width, height) was not significantly improved, however, warping along the length of the bar was significantly reduced. A similar approach for more complex geometries, (i.e. holes and arcs) is currently under development. Initial thoughts and plans are presented as concluding remarks. Using ILC to account for common issues with desktop FDM printers could enable higher quality parts to be made, without a substantial investment in higher-grade equipment.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85582496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Synthesis of Nano-Dots and Lines by Glancing Angle Deposition With Corrals 用扫角沉积法合成纳米点和纳米线
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-83720
C. Qu, S. Mcnamara, K. Walsh
{"title":"Synthesis of Nano-Dots and Lines by Glancing Angle Deposition With Corrals","authors":"C. Qu, S. Mcnamara, K. Walsh","doi":"10.1115/msec2022-83720","DOIUrl":"https://doi.org/10.1115/msec2022-83720","url":null,"abstract":"\u0000 This paper introduces using GLancing Angle Deposition (GLAD) with corral seeds for synthesizing nanodots and nanolines. GLAD is an advanced physical vapor deposition technique for creating three dimensional nanostructures. GLAD is commonly combined with pre-determined seeds on the substrate to create periodic nanofeature arrays; the seeds are usually artificial nucleation sites to rearrange the deposition patterns. However, the concept of corral seeds is different: the incident vapor will be depositing both on and inside the sacrificial layer of the corrals that consist various shapes; the desired nanostructures are grown from the overlapped deposition areas inside the corrals while the substrate rotates, depending on the shape of the corrals, and eventually will be remaining on the substrate when the sacrificial layer of the corral seeds is removed. The thickness of the sacrificial corrals along with the incident angle of the vapor define the shadow areas and deposition areas inside the corrals on the substrate. In this paper, three types of corrals are introduced: circular corrals, dumbbell corrals, and line corrals. The different nanofeatures of nanodots, limited-length nanolines and wafer-length nanolines created by different shaped corrals are presented. The fabricated nanodots and nanolines are potentially used in various optical and sensing applications. The two-step fabrication process of preparing corrals and GLAD provides numerous benefits for the synthesis of the nanofeatures.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85661182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Laser-Induced Surface Structuring of Anti-Fouling Steel Surfaces for Biomedical Applications 生物医学用防污钢表面的超快激光诱导表面结构
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-85249
Abhijit Cholkar, R. McCann, D. Kinahan, D. Brabazon
{"title":"Ultrafast Laser-Induced Surface Structuring of Anti-Fouling Steel Surfaces for Biomedical Applications","authors":"Abhijit Cholkar, R. McCann, D. Kinahan, D. Brabazon","doi":"10.1115/msec2022-85249","DOIUrl":"https://doi.org/10.1115/msec2022-85249","url":null,"abstract":"\u0000 Metallic surfaces are increasingly used in medical applications due to their favorable material properties such as high strength and biocompatibility. In medical applications anti-fouling properties are an important requirement especially for implants and medical devices which come into contact with different types of fluid streams. These should be anti-fouling in order to prevent contamination and corrosion. Laser processing methods such as ultrafast laser processing is a one-step and scalable process for surface texturing. This process can be used to produce well-defined surface nano- and microscale superficial textures such as Laser-induced Periodic Surface Structures (LIPSS) which can enhance the anti-fouling capability of the surface.\u0000 In this study, micro and nano scaled LIPSS structures are manufactured on a biocompatible grade stainless steel 316L substrate using an ultrafast (< 370 fs) and low power (< 4 W) laser system. With an aim to optimize the anti-fouling properties, laser process parameters such as pulse energy, pulse repetition rate and beam scanning speed were varied to produce microstructures on the stainless-steel surface of varying dimensions. Surface roughness was analyzed using a laser surface profilometer and changes in the hydrophobicity were examined using water contact angle goniometry.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76306922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Product Life-Cycle Energy Framework in Friction Scenarios 摩擦情景下的产品生命周期能量框架
IF 1
Journal of Micro and Nano-Manufacturing Pub Date : 2022-06-27 DOI: 10.1115/msec2022-85263
B. Linke, Shivam Gupta
{"title":"Product Life-Cycle Energy Framework in Friction Scenarios","authors":"B. Linke, Shivam Gupta","doi":"10.1115/msec2022-85263","DOIUrl":"https://doi.org/10.1115/msec2022-85263","url":null,"abstract":"\u0000 Manufacturers have great power to change the sustainability of products over the whole life cycle, but they need holistic life cycle models to guide those decisions. Challenges exist in connecting the product’s life cycle data to model-based sustainability metrics and in quantifying uncertainty in the product data. This study develops a life-cycle energy framework around two application cases to showcase informed and transparent decision-making. The case studies investigate additively manufactured parts in two friction scenarios, one where low friction is desired and one where high friction is preferred. The layer height is chosen as process parameter of additive manufacturing that changes the surface roughness of the sample parts, but also the manufacturing time and energy. The use phase energy in the first friction scenario is influenced by the user behavior, and by a random input function in the second scenario. The life-cycle energy framework is used to discuss total life cycle energy for each scenario. In general, this framework should be used to better connect product use phase and manufacturing phase, in particular by examining the interconnections of part design, manufacturing phase impacts, and use performance. Product quality is the central aspect of optimization. The framework can be used for engineering education and be expanded to study data uncertainty, user behavior, system complexity, process chains, machine learning, sustainability metrics, and more.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76382402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信