{"title":"Study on an Online Vibration Measurement System for Seismic Waves Caused by Blasting for Mining in Vietnam","authors":"H. Dao, T. L. Pham, N. P. Hung","doi":"10.22044/JME.2021.10677.2028","DOIUrl":"https://doi.org/10.22044/JME.2021.10677.2028","url":null,"abstract":"Blasting has become a crucial work in mining operation. However, it produces high-intensity seismic waves which cause some serious troubles such as injure people, fly-rock, cracking, breaking and reducing the lifetime of adjacent buildings. In Vietnam, there have been many conflicts between residents and government about the compensation policy for these damages. The solution is proposed, in which a similar explosion is made and an instantaneous concussion meter is used to record the magnitude of the generated shock wave. The results received from this operation will be used to determine the effects of mining blast. In fact, that is an incorrect method because just by changing the type of explosives, the order, the explosives, etc., the shock wave will be significantly reduced. Nothing is ensured that another explosion causing a shock wave amplitude will not occur in the future. To solve this problem, this paper presents an online seismic wave monitoring system operating 24/24h, to transmit the recorded signal to an independent server located around the boundary of the mine. On the basis of the mechanism of generating explosive waves and the recording mechanism of shock waves, the authors have built a program to store records according to the permissible influence of Vietnam Standard and Circular 32/2019/TT- Vietnam Board of Directors.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46330867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. S. Shah, Mohd Hazizan bin Mohd Hashim, K. Ariffin
{"title":"Monte Carlo Simulation-Based Uncertainty Integration into Rock Particle Shape Descriptor Distributions","authors":"K. S. Shah, Mohd Hazizan bin Mohd Hashim, K. Ariffin","doi":"10.22044/JME.2021.10472.1997","DOIUrl":"https://doi.org/10.22044/JME.2021.10472.1997","url":null,"abstract":"The particles within the rock samples are present in extensive ranges of shapes and sizes, and their characterization and analysis exist with a considerable diversity. The prior research works have appraised the significance of the particle shape types and their effects on the geotechnical structures and deficiencies by evaluating the uncertainty-related rock particle shape descriptors (PSDs). In this work, the Monte Carlo simulation (MCS) is used in order to present a framework to integrate the inherent uncertainty associated with PSDs. A tabletop microscope is used to measure the primary particle shape distribution for the sandstone samples. An open-source processing tool, ImageJ, is used in order to analyze PSDs. The probabilistic distribution of PSDs is acquired using MCS according to the relative frequency histogram of the input parameters. Additionally, a probabilistic sensitivity analysis is performed in order to evaluate the importance of the input parameters in PSDs. The sensitivity analysis results demonstrate that the major axis and area are the most influential parameters involved. The simulation results obtained have revealed that the proposed framework is capable of integrating the inherent uncertainties related to the particle shape.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48222462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Probabilistic Approach for Prediction of Drilling Rate Index using Ensemble Learning Technique","authors":"M. Kamran","doi":"10.22044/JME.2021.10689.2030","DOIUrl":"https://doi.org/10.22044/JME.2021.10689.2030","url":null,"abstract":"Drillability is one of the significant issues in rock engineering. The drilling rate index (DRI) is an important tool in analyzing the drillability of rocks. Several efforts have been made by the researchers to correlate and evaluate DRI of rocks. The ensemble learning methods including the decision tree (DT), adaptive boosting (AdaBoost), and random forest (RF) are employed in this research work in order to predict DRI of rocks. A drillability database with four parameters is compiled in this work. A relationship between the input parameters and DRI is established using the simple regression analysis. In order to train the model, different mechanical properties of rocks incorporating the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), brittleness test (S20), and sievers’ J-miniature drill value (Sj) are taken as the input variables. The original DRI database is randomly divided into the training and test sets with an 80/20 sampling method. Various algorithms are developed, and consequently, several approaches are followed in order to predict DRI of the rock samples. The model performance has revealed that RF predicts DRI with a high accuracy rate. Besides, the Monte Carlo simulations exhibit that this approach is more reliable in predicting the probability distribution of DRI. Therefore, the proposed model can be practiced for the stability risk management and the investigative design of DRI.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44285785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculation of Optimum Soil Conditioning in EPB Tunneling (Case Study: Ahwaz Metro Project, Line 1)","authors":"H. Masoumi, A. Abdollahipour, Kh. Baghernia","doi":"10.22044/JME.2021.10664.2025","DOIUrl":"https://doi.org/10.22044/JME.2021.10664.2025","url":null,"abstract":"Determination of the optimum soil conditioning parameters in the earth pressure balance-tunnel boring machines (EPB-TBMs) plays an important role in reaching an optimum thrust force and advance speed. Silty-clay (CL-ML) in line 1 of the Ahwaz metro project is used in order to find the conditioning parameters of slumps with different water contents and foam agents. The results obtained are a quantitative comparison between the parameters with different soil conditioning and water contents. Hence, the test results can be used to determine the most economical and technical conditioning parameters for a special condition of soil. The optimum quantity of foam expansion ratio (FER), foam injection ratio (FIR), percent ratio between the surfactant agent and the water volume (Cf), and cost for foam in this soil (based on the soil conditioning production cost) are 10, 157%, 2.07, 248 units, respectively. Soil conditioning with the optimum parameters obtained are tested in a TBM in two stages during excavation of 140 rings. This results in a lower soil conditioning cost and almost 40% higher advance speed.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42542051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. N. Ghoshebolagh, A. K. Rouhani, A. Amiri, H. Bizhani
{"title":"An Exploration Model for A Gold Deposit in Kervian Area, Kurdistan Province, Iran, using a Combination of Geophysical Results with Geological Information and Other Exploratory Data","authors":"S. N. Ghoshebolagh, A. K. Rouhani, A. Amiri, H. Bizhani","doi":"10.22044/JME.2021.10403.1989","DOIUrl":"https://doi.org/10.22044/JME.2021.10403.1989","url":null,"abstract":"As many gold deposits are associated with sulfide zones, and the direct exploration of gold deposits using the geophysical methods is very difficult due to its low amount in the sub-surface, the direct exploration of sulfide zones by the geophysical electrical resistivity and induced polarization (IP) methods may lead to the indirect exploration of gold deposits. The gold deposit in the Kervian area is located in the Kurdistan shear zone, and is directly related to the sulfide, silica, and carbonate alteration units. After acquiring the resistivity and IP data, 2D modeling of the data is made in order to indirectly identify the gold-bearing zones in the surveyed area. As some of the identified geophysical anomalies indicating the sulfide zones may not be associated with the economic amounts of gold, in order to obtain an exploration pattern for the gold deposit in the studied area, a combination of the geophysical data modeling and interpretation results with the geological information and other exploratory data is used to reduce the uncertainty in identifying the gold-bearing zones in the studied area. Thus, modeling and interpretation of the geophysical data lead to identify the sub-surface anomalies as the locations of possible gold mineralization in the area, and then the drilling points are suggested in the area. Considering the geological studies and chemical analysis of the samples taken from the drilled boreholes crossing some of the geophysical anomalies, we conclude that the geophysical anomalies occurring inside the phyllite and carbonate units in the area can contain an economic amount of gold, and thus are recommended as the top priority for further exploration.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45400228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Underground Mineable Reserve in Presence of Grade and Commodity Price Uncertainties","authors":"M. Shenavar, M. Ataee-Pour, M. Rahmanpour","doi":"10.22044/JME.2021.10301.1974","DOIUrl":"https://doi.org/10.22044/JME.2021.10301.1974","url":null,"abstract":"The uncertainty-based mine evaluation and optimization have been regarded as a critical issue. However, it has received less attention in the underground mines than in the open-pit mines due to the diversity of the underground mining methods, and the underground mining parameters' complexity. The grade and commodity price uncertainties play essential roles in mining projects. Mine planning by not incorporating these uncertainties is accompanied by risks. The evaluation and risk assessment of the mine plans is possible through evaluating the mineable reserve in the presence of such uncertainties. In the present work, we evaluate the effects of grade and commodity price uncertainties on the underground mining stope optimization and the resultant mineable reserve. In this regard, the stope boundary is studied both deterministically and stochastically in the presence of the grade and price uncertainties. For this purpose, in this work, we implement the conditional simulation in order to generate equally probable ore reserve models. Furthermore, we optimize the stope boundary using the floating-stope algorithm in each realization. Several decision support criteria including the 'mineable reserve,' 'metal-content,' 'profit,' and 'value-at-risk' are defined to assist the decision-maker in uncertain conditions. Finally, a procedure is defined in order to consider two types of uncertainty sources simultaneously in underground mining. It will guide the decision-maker toward the most appropriate stope boundary that best fits the mining company's requirements. The procedure is implemented in a bauxite mine, and the optimal stope boundary is determined concerning the different criteria.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46505385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highest-Level Implementation of the Push–Relabel Algorithm to Solve the Ultimate Pit Limit Problem","authors":"Mehdi Talaei, Amin Mousavi, A. Sayadi","doi":"10.22044/JME.2021.10481.1999","DOIUrl":"https://doi.org/10.22044/JME.2021.10481.1999","url":null,"abstract":"Nowadays due to the existence of the economic and geological uncertainties and the increasing use of scenario-based project evaluation in the design of open-pit mines, it is necessary to find an exact algorithm that can determine the ultimate pit limit in a short period of time. Determining the ultimate pit limit is an important optimization problem that is solved to define what will be eventually extracted from the ground, and directly impacts the mining costs, revenue, choosing mining equipment, and approximation of surface infrastructures outside the pit. This problem is solved in order to maximize the non-discounted profit under the precedence relation (access) constraints. In this paper, the Highest-Level Push-Relabel (HI-PR) implementation of the push–relabel algorithm is discussed and applied in order to solve the ultimate pit limit optimization problem. HI-PR uses the highest-label selection rule, global update, and gap heuristics to reduce the computations. The proposed algorithm is implemented to solve the ultimate pit limit for the nine real-life benchmark case study publicly available on the Minelib website. The results obtained show that the HI-PR algorithm can reach the optimum solution in a less computational time than the currently implemented algorithms. For the largest dataset, which includes 112687 blocks and 3,035,483 constraints, the average solution time in 100 runs of the algorithm is 4 s, while IBM CPLEX, as an exact solver, could not find any feasible solution in 24 hours. This speeding-up capability can significantly improve the current challenges in the real-time mine planning and reconciliation, where fast and reliable solutions are required.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44771651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semi-analytical study on the settlement of two interfering foundations placed on a slope","authors":"Hadi Haghgouei, A. Kargar, M. Khosravi, M. Amini","doi":"10.22044/JME.2021.10509.2001","DOIUrl":"https://doi.org/10.22044/JME.2021.10509.2001","url":null,"abstract":"In many engineering constructions, the foundations should be built adjacent to each other. Therefore, the effect of interfering of close foundations should be considered in the design stage. In this research work, the effect of interference of closely separated foundations resting on a slope on the elastic settlement is investigated by considering a semi-analytical solution. The distribution of stress due to the footing pressure in the slope is computed by a proposed Airy stress function, and then by employing the finite difference scheme, the displacement of the footings is calculated. The results obtained show that by increasing the distance between the foundations, the interference influence on the ratio of settlement will be diminished. However, this behavior is highly linked to the slope characteristics. For a slope with a height of 10 times of footing width, beyond an S/B ratio larger than 10, the effect of interference is not tangible, and the footings behave like an isolated foundation. By decreasing the slope height, this behavior will occur at a lower S/B.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44465188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Sadrmohammadi, R. Mehrnia, K. Rezaei, S. Kadioglu, M. Honarvar
{"title":"Evaluation of Fractal Variance-Distance Model in Identifying Geochemical Anomalies of Calamine Mehdiabad Mining Complex, Central Iran","authors":"N. Sadrmohammadi, R. Mehrnia, K. Rezaei, S. Kadioglu, M. Honarvar","doi":"10.22044/JME.2020.10215.1960","DOIUrl":"https://doi.org/10.22044/JME.2020.10215.1960","url":null,"abstract":"In this paper, a power-law relation modeling called the vario-fractal model is introduced in order to understand the discrepancies between the linear and non-linear distribution of the elements and its application for mineral exploration in the calamine Zn-Pb ore-deposit. From a hypothetical viewpoint, since geochemical zonation of the supra- and sub-ore elements is a crucial evaluation criterion for concealed/underlying mineralization potentials, this hypothesis can be tested by delineating the fractal surfaces of elements as the geometric evidence of primary geochemical zonation of elements in the calamine mine. A comparison of the linear regression results with the Poisson distribution coefficients indicate the relative tendency of the elements towards a non-linear distribution. Therefore, a logarithmic equation derived from the variance-distance relationship (power-law) is used here for the delineation of fractal surfaces of elements as the geometric features related to proper self-organized distributions. In this research work, the vario-fractal expression of geochemical zonation has trace-element tendencies to the non-linear distribution. The results obtained show that the calamine’s fractional surfaces are mostly of self-organized types, situated at 2 < FD < 3 as \"real fractal surfaces\", although 3 of the elements appear in the quasi-fractal populations called \"near Brownies” here. Moreover, the calamine’s fractal surfaces can be extended throughout the anomalous regions or may be distributed as limited types of the finalized model, which is a fractal-based pattern of geochemical zonation of the elements for evaluation of the hypogenic mineralization potential and has been prioritized to 6 target-areas containing 10 elements with real fractal surfaces and 3 more at near Brownies and then validated by the mineralogical evidence.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68385681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Stability Analysis of Undercut Slopes Evaluated by Response Surface Methodology","authors":"Hassan Sarfaraz, M. Khosravi, T. Pipatpongsa","doi":"10.22044/JME.2020.10199.1957","DOIUrl":"https://doi.org/10.22044/JME.2020.10199.1957","url":null,"abstract":"One of the most important tasks in designing the undercut slopes is to determine the maximum stable undercut span to which various parameters such as the shear strength of the soil and the geometrical properties of the slope are related. Based on the arching phenomenon, by undercutting a slope, the weight load of the slope is transferred to the adjacent parts, leading to an increase in the stability of the slope. However, it may also lead to a ploughing failure on the adjacent parts. The application of counterweight on the adjacent parts of an undercut slope is a useful technique to prevent the ploughing failure. In other words, the slopes become stronger as an additional weight is put to the legs; hence, the excavated area can be increased to a wider span before the failure of the slope. This technique could be applied in order to stabilize the temporary slopes. In this work, determination of the maximum width of an undercut span is evaluated under both the static and pseudo-static conditions using numerical analyses. A series of tests are conducted with 120 numerical models using various values for the slope angles, the pseudo-static seismic loads, and the counterweight widths. The numerical results obtained are examined with a statistical method using the response surface methodology. An analysis of variance is carried out in order to investigate the influence of each input variable on the response parameter, and a new equation is derived for computation of the maximum stable undercut span in terms of the input parameters.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68385672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}