{"title":"Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives","authors":"H. Hassani, A. Agah","doi":"10.22044/JME.2021.11092.2086","DOIUrl":"https://doi.org/10.22044/JME.2021.11092.2086","url":null,"abstract":"In this work, Fe3O4@TiO2@V2O5 is synthesized via functionalization of Fe3O4 with TiO2 and then modifying with V2O5. The characterization of the synthesized nano-catalyst is performed using several methods including XRD, TEM, SEM, EDS, TGA, and VSM. This nano-catalyst impressively catalyzes the synthesis of 3,3-di-indolyl oxindoles (with an 85-98% yield in 10-80 minutes). Furthermore, the introduced catalyst can be reused in at least five successive reactions with no significant catalytic activity loss. The effects of some influencing parameters on the catalytic efficacy of Fe3O4@TiO2@V2O5 are also assessed. The appropriate product is attained for a wide range of isatins and indoles. Using an inexpensive and reusable catalyst and using the H2O solvent puts this methodology in the green chemistry domain.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49101966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Hussain, Z. Rehman, N. Khan, Ishaq Ahmad, S. Raza, Muhammad Tahir, Asad Ullah, D. Afzal, Ali Khan, M. Salman, S. Sherin
{"title":"Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes","authors":"S. Hussain, Z. Rehman, N. Khan, Ishaq Ahmad, S. Raza, Muhammad Tahir, Asad Ullah, D. Afzal, Ali Khan, M. Salman, S. Sherin","doi":"10.22044/JME.2021.11198.2099","DOIUrl":"https://doi.org/10.22044/JME.2021.11198.2099","url":null,"abstract":"The design of a stable slope in a rock mass environment is a quite complicated job due to the anisotropic behaviour of the rock mass. In this research work, the cut slopes at the Swat motorway in the weakest schist rock is numerically analyzed by the shear strength reduction (SSR) approach using the Finite Element-based 2D RS2 software. The slope is divided into two cases according to the nature of the rock. Each case of the cut slope is analyzed by two stabilization methods: 1) changing the characteristics of the slope 2) support system installation based on the Mohr-Coulomb (MCC) and Generalized Hoek and Brown (GHB) failure criteria in order to propose the most appropriate method for slope stabilization. The results obtained reveal that the Critical Strength Reduction Factor (CSRF) before applying the stabilization methods is 1.34 (MCC) and 1.04 (GHB) for Case-I and 1.21 (MCC) and 0.53 (GHB) for Case-II. CSRF for Case-I after changing the characteristics of the slope is observed to be 2.43 (MCC) and 2.33 (GHB), while for Case-II is 1.82 (MCC) and 1.26 (GHB), respectively. CSRF for Case-I after the support installation criteria is 1.59 (MCC) and 1.07 (GHB), while for Case-II is 1.65 (MCC) and 0.5 (GHB), respectively. Based on the comparative analysis, it is revealed that changing the characteristics of the slope method shows prominent results in both cases; therefore, this method can be effectively used in order to stabilize the slope in the weakest rock mass environment.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41621026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study","authors":"Radhakanta Koner","doi":"10.22044/JME.2021.10979.2074","DOIUrl":"https://doi.org/10.22044/JME.2021.10979.2074","url":null,"abstract":"The Wardha valley coalfields, situated in the western part of India, contribute to more than 7% of the national coal production. The open-pit mining methods are the modes of exploitation of coal in the majority of the mines in the area. Due to the increased depth of working and higher stripping ratio, the output of waste overburden is increased. The challenges are the scarcity of the available land for dumping waste overburden geo-material safely. Optimization of the mine dump slope geometry is the only available alternative in the hands of the management in order to increase the life of the projects and continue the production of coal. This investigation specifically addresses this issue, and proposes a combination of the optimum geometric configurations of the dump slope. This work utilizes the computational power of the numerical modeling technique in order to solve a large number of alternatives and zero them down to the optimum combination. The numerical modeling is considered as a major external factor that contributes to the mine dump's instability. This work shows an 18% increase in the dumping waste material volume in the present condition. This investigation also reveals that double stage dumping is comparably better in optimizing the dump slope configuration.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68386302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study","authors":"J. V. Mehrabani, M. Goharkhah","doi":"10.22044/JME.2021.11105.2093","DOIUrl":"https://doi.org/10.22044/JME.2021.11105.2093","url":null,"abstract":"In the current research work, a piping system is designed for slurry transport to the tailing dam in the Kooshk lead-zinc mine, Iran. The experiments are carried out primarily to investigate the rheological behavior of the slurry at different densities and obtain a non-Newtonian model for the shear stress variation with the deformation rate. It is shown that the shear stress of concentrated slurry follows the plastic Bingham model. The results obtained also indicate the increasing trend of the yield stress and the apparent viscosity of the slurry with the density. Appropriate correlations are proposed for the apparent viscosity and yield stress as a function of pulp concentration. At the next step, the required design parameters such as the slurry flow rate, pressure drop, critical velocity, and minimum required head for flow initiation and head losses are calculated for different slurry densities and pipe sizes. The appropriate piping system is finally designed based on the experimental data and the calculated parameters. It is concluded that the 3 in diameter pipe can be used to deliver the slurry with solid concentrations between 44% < Cw < 60% by weight, without a pumping system.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44982247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating correlation of physico-mechanical parameters and P-wave velocity of rocks: a comparative intelligent study","authors":"H. Fattahi, Mahdi Hasanipanah, N. Z. Ilghani","doi":"10.22044/JME.2021.11121.2092","DOIUrl":"https://doi.org/10.22044/JME.2021.11121.2092","url":null,"abstract":"The mechanical characteristics of rocks and rock masses are considered as the determining factors in making plans in the mining and civil engineering projects. Two factors that determine how rocks responds in varying stress conditions are P-wave velocity (PWV) and its isotropic properties. Therefore, achieving a high-accurate method to estimate PWV is a very important task. This work investigates the use of different intelligent models such as multivariate adaptive regression splines (MARS), classification and regression tree (CART), group method of data handling (GMDH), and gene expression programming (GEP) for the prediction of PWV. The proposed models are then evaluated using several error statistics, i.e. squared correlation coefficient (R2) and root mean squared error (RMSE). The values of R2 obtained from the CART, MARS, GMDH, and GEP models are 0.983, 0.999, 0.995, and 0.998, respectively. Furthermore, the CART, MARS, GMDH, and GEP models predict PWV with the RMSE values of 0.037, 0.007, 0.023, and 0.020, respectively. According to the aforementioned amounts, the models presented in this work predict PWV with a good performance. Nevertheless, the results obtained reveal that the MARS model yields a better prediction in comparison to the GEP, GMDH, and CART models. Accordingly, MARS can be offered as an accurate model for predicting the aims in other rock mechanics and geotechnical fields.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45467710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector","authors":"A. Javadi","doi":"10.22044/JME.2021.10881.2064","DOIUrl":"https://doi.org/10.22044/JME.2021.10881.2064","url":null,"abstract":"Carnallite, with the chemical formula KMgCl3.6H2O, is a mineral that was first discovered in the Urals Mountains in Russia. The reverse flotation has been established for carnallite processing in the current decades, and the alkyl morpholine collector is used for the removal of NaCl from carnallite using the reverse flotation. The carnallite processing method involves reverse flotation with the dodecyl morpholine collector, and then centrifugation and cold crystallization. In this research work, kimiaflot 619, as a new collector, is synthesized, and the bench-scale flotation shows that kimiaflot 619 reveals a better selectivity and affinity for the NaCl crystals at an acidic pH with a less collector dosages–only 1/2 of the Armoflot 619 collector. The flotation results indicate that the NaCl grade in carnallite concentrated by Armoflot 619 (200 g/t) is 2.86%, while the NaCl grade in carnallite concentrated by kimiaflot 619collector (100 g/t) is 2.75%. The frother’s stability of the Armoflot 619 collector after flotation is very high and uncontrollable, while kimiaflot 619 has solved this problem, and it is completely controllable.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43704838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Mikaeil, Shahrokh Khosravimanesh, M. C. Seifabad, R. Bagherpour
{"title":"Study of Effect of Cooling/Lubricating Fluids, Machining Parameters, and Rock Mechanical Properties on Penetration Rate in Rock Drilling Process","authors":"R. Mikaeil, Shahrokh Khosravimanesh, M. C. Seifabad, R. Bagherpour","doi":"10.22044/JME.2021.11017.2078","DOIUrl":"https://doi.org/10.22044/JME.2021.11017.2078","url":null,"abstract":"In most rock drilling operations, the low rate of penetration (ROP) can be primarily attributed to the presence of the cuttings produced during drilling and the thermal stresses caused by friction at the bit-rock interface, which can be exacerbated with the increasing strength, hardness, and abrasivity of the drilled rock. In order to improve ROP, drill bit lifetime, and cutting power, it is necessary to minimize the process forces due to the mechanical bit-rock interaction and the thermal stresses generated in the drill hole. Any improvement in these areas is extremely important from both the technical and the economic perspectives. This improvement can be achieved by the use of appropriate cooling/lubricating fluids in the drilling process in order to increase ROP, reduce the temperature of the drilling environment, and create a clean drill hole free of cuttings. In this work, a series of laboratory drilling tests are performed to investigate and compare ROP in the drilling of seven samples of hard and soft rock in the presence of six different cooling-lubricating fluids. The drilling tests are performed on the cubic specimens with a laboratory-scale drilling rig at several different rotation speeds and thrust forces. The statistical analyses are performed in order to investigate the relationship between ROP and the mechanical properties of the rock, properties of the fluid, and machining parameters of the drilling rig. These analyses show that under similar conditions in terms of mechanical properties of the rock using Syncool with a concentration of 1:100 and soap water with a concentration of 1:120 instead of pure water leads to the average 31% and 37% increased ROP in granite, 36% and 43% increased ROP in marble, and 47% and 61% increased ROP in travertine, respectively. These results demonstrate the good performance of these cooling/lubricating fluids in increasing ROP.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49048635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining an appropriate range for the number of cuboid lifters in ball mills using DEM","authors":"M. Chegeni, Sajad Kolahi","doi":"10.22044/JME.2021.11052.2081","DOIUrl":"https://doi.org/10.22044/JME.2021.11052.2081","url":null,"abstract":"The number of lifters in the liner of ball mills and the mill rotation speed are among the most significant factors affecting the behavior of grinding charge (balls) and their motion trajectory, and consequently, the comminution mechanism in these mills. In this research, in order to find a suitable range for the number of lifters in the liner of ball mills, the DEM method is utilized. Initially, a pilot-scale ball mill with dimensions of 2.0 m × 1.11 m without any lifter is simulated. Afterwards, by adding, respectively, 1, 2, 4, 8, 16, 20, 26, 30, and 32 cuboid lifter(s) with dimensions of 2 m × 5 cm × 5 cm, nine other separate simulations are performed. The influences of the number of cuboid lifters on the two new factors introduced here, namely ‘head height’ (HH) and ‘impact zone length’ (IZL) at various mill speeds, that is, 70% and 80% of its critical speed (CS) are investigated. The results indicate that in order to find a suitable range for the number of lifters in the liner of ball mills, it is necessary to consider these two parameters simultaneously as the criteria for selecting the appropriate range, That is, liners that simultaneously produce both a higher HH and a greater IZL are more suitable for use in the industry. The results also demonstrate that the suitable range for the number of cuboid lifters in the liner of ball mills is between 16 and 32, which field research on the ball mills of three different plants in the industry confirms the accuracy of the results obtained in this research. Unlike the previous research works, it has now been shown that the number of ball mill lifters does not only depend on the diameter of the mill but also depends on the width, height, angle of the lifter, and generally on the type of lifter.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42652050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of single tunnel and twin tunnel on collapse pattern and maximum ground movement","authors":"V. Sarfarazi, Kaveh Asgari","doi":"10.22044/JME.2021.11088.2085","DOIUrl":"https://doi.org/10.22044/JME.2021.11088.2085","url":null,"abstract":"Particle Flow Code in Two Dimensions (PFC2D) was used in order to examine the influence of single tunnel and twin tunnel on the collapse pattern and maximum ground movement. Since first PFC was calibrated by the experiments, the results obtained were rendered by a uniaxial test. Further, a rectangular model with dimensions of 100 m ˟ 100 m containing both the central tunnel and twin tunnel was built. The center of the single tunnel was placed 25 m under the ground surface, and its diameter changed from 10 m to 35 m with an increment of 5 m. The center of the twin tunnel was situated 25 m under the ground surface, and its diameter was changed from 10 m to 30 m with an increment of 5 m. For measurement of the vertical displacement, one measuring circle with a 2 m diameter was opted on the ground surface above the tunnel roof. The average of the vertical movement of discs covered in these circles was determined as a ground settlement. A confining pressure of 0.01 MPa was applied on the model. The uniaxial compression strength was 0/09 MPa; the results obtained depicted that the tunnel diameter controlled the extension of the collapse zone. Also the vertical displacement at the roof of the tunnel declined by decreasing the tunnel diameter. The ground settlement increased by increasing the tunnel diameter.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44740592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Ibrahim, Nisar Mohammad, Zaheer Kasi, Sher Bacha, N. Khan, Muhammad Iftikhar Khan
{"title":"Optimization of Process Parameters for Enhanced Up-gradation of Qilla Saifullah Copper ore through Froth Floatation Technique","authors":"M. Ibrahim, Nisar Mohammad, Zaheer Kasi, Sher Bacha, N. Khan, Muhammad Iftikhar Khan","doi":"10.22044/JME.2021.10796.2047","DOIUrl":"https://doi.org/10.22044/JME.2021.10796.2047","url":null,"abstract":"In this work, we focus on the up-gradation of the copper ore of Qilla Saifullah in Pakistan through the froth flotation technique. The chemical analysis of the head copper ore sample reveal the presence of 2.85% Cu, 22% Fe2O3, 52.9% SiO2, and other minor minerals. The optimum grinding time and liberation size of the copper ore have been determined as 30 minutes and +149-105 µm, respectively, for further processing. The chemical reagents are optimized in order to get a maximum grade and recovery of the copper ore. After comparisons and analysis of the results obtained, it can be concluded that the maximum grade and recovery of the copper ore are achieved at the dosage 300 (g/t) of the collector potassium amyl xanthate (C6H11KOS2), 250 g/t of pine oil, 250 g/t of a depressant (Na2SiO3), conditioning time of 10 minutes for a collector, flotation time of 6 and 10 minutes, and pH of 10 using the froth flotation technique.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44217579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}