Journal of Astronomical Instrumentation最新文献

筛选
英文 中文
The SOFIA Telescope in Full Operation 索菲亚望远镜全面运行
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S225117171840007X
Andreas Reinacher, Friederike Graf, Benjamin Greiner, H. Jakob, Y. Lammen, Sarah Peter, M. Wiedemann, Oliver Zeile, H. Kaercher
{"title":"The SOFIA Telescope in Full Operation","authors":"Andreas Reinacher, Friederike Graf, Benjamin Greiner, H. Jakob, Y. Lammen, Sarah Peter, M. Wiedemann, Oliver Zeile, H. Kaercher","doi":"10.1142/S225117171840007X","DOIUrl":"https://doi.org/10.1142/S225117171840007X","url":null,"abstract":"The SOFIA telescope is a 2.5[Formula: see text]m class Cassegrain telescope with Nasmyth focus. It is the largest telescope ever integrated into an aircraft. The telescope is exposed to the stratospheric environment during the observations and the fact that the telescope’s foundation, which is a Boeing 747 SP, is vibrating and moving in all degrees of freedom (DoF) requires a highly specialized and sophisticated design. Based on the telescope of its predecessor, the Kuiper Airborne Observatory (KAO), the SOFIA telescope design had to evolve to accommodate a telescope 2.5 times the size of KAO. In several hundred successful observation flights, the telescope proved that it performs not only as specified, but is also extremely reliable. Nevertheless, the telescope’s software and hardware are continuously upgraded to optimize its performance without interfering with the observation schedules to reach even more ambitious image size and pointing jitter goals to enable additional science cases. In addition, manufacturing of the line-replaceable units is in process to ensure that the SOFIA telescope can perform without any major interruptions for the envisioned 20 year lifetime. Some of the main features of the SOFIA telescope are its suspension assembly (SUA), which decouples the telescope from SOFIA’s fuselage with air springs and a spherical oil bearing, the extremely stiff Nasmyth tube (NT), which connects cavity and cabin mounted components of the dumbbell design, and the Secondary Mirror Assembly (SMA), which is used for chopping and fast pointing corrections. This paper aims to give an overview of these and all other major telescope subsystems in operation today. In addition, some of the upgrades, either implemented recently or slated for implementation shortly, are introduced.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S225117171840007X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46911160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
SOFIA at Full Operation Capability: Technical Performance 索菲亚在全面运行能力:技术性能
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400111
P. Temi, D. Hoffman, K. Ennico, Jeanette H. Le
{"title":"SOFIA at Full Operation Capability: Technical Performance","authors":"P. Temi, D. Hoffman, K. Ennico, Jeanette H. Le","doi":"10.1142/S2251171718400111","DOIUrl":"https://doi.org/10.1142/S2251171718400111","url":null,"abstract":"The Stratospheric Observatory for Infrared Astronomy (SOFIA), the largest airborne observatory in the world, is in full operation capability since February 2014 and is currently completing its Observing Cycle 6 Program. The first four years of operation have provided the opportunity to assess the high-level observatory’s technical performance and to identify additional observatory upgrades. Since the start of routine operations, performance and productivity in several areas of the observatory, including science, operations and engineering, have been tracked by metrics and statistics. In this paper we present the general observatory technical performance as the observatory has reached its maturity and has served the science community with over 2900[Formula: see text]h of scientific observations.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47350267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
FORCAST: A Mid-Infrared Camera for SOFIA 预报:索菲亚将有一台中红外照相机
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400056
T. Herter, J. Adams, G. Gull, J. Schoenwald, L. Keller, B. Pirger, C. Henderson, G. Stacey, T. Nikola, J. D. De Buizer, W. Vacca, K. Ennico
{"title":"FORCAST: A Mid-Infrared Camera for SOFIA","authors":"T. Herter, J. Adams, G. Gull, J. Schoenwald, L. Keller, B. Pirger, C. Henderson, G. Stacey, T. Nikola, J. D. De Buizer, W. Vacca, K. Ennico","doi":"10.1142/S2251171718400056","DOIUrl":"https://doi.org/10.1142/S2251171718400056","url":null,"abstract":"We describe the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) which is presently operating as a facility instrument on the Stratospheric Observatory For Infrared Astronomy (SOFIA). FORCAST provides imaging and moderate resolution spectroscopy capability over the 5–40[Formula: see text][Formula: see text]m wavelength range. In imaging mode, FORCAST has a 3.4[Formula: see text] field-of-view with 0.768[Formula: see text] pixels. Using grisms, FORCAST provides long-slit low-resolution ([Formula: see text]–300) and short-slit, cross-dispersed medium-resolution spectroscopic modes ([Formula: see text]–1200) over select wavelengths. Preceded by both Spitzer and Herschel, the discovery phase space for FORCAST lies in providing unique photometric bands and/or spectroscopic coverage, higher spatial resolution and exploration of the brightest sources which typically saturate space observatories.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42298217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
The SOFIA Focal Plane Imager: A Highly Sensitive and Fast Photometer for the Wavelength Range 0.4 to 1 Micron SOFIA焦平面成像仪:适用于0.4至1微米波长范围的高灵敏度快速光度计
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400068
E. Pfüller, J. Wolf, M. Wiedemann
{"title":"The SOFIA Focal Plane Imager: A Highly Sensitive and Fast Photometer for the Wavelength Range 0.4 to 1 Micron","authors":"E. Pfüller, J. Wolf, M. Wiedemann","doi":"10.1142/S2251171718400068","DOIUrl":"https://doi.org/10.1142/S2251171718400068","url":null,"abstract":"The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft, accommodating a 2.7[Formula: see text]m infrared telescope. This airborne observation platform operates at flight altitudes of up to 13.7[Formula: see text]km (45,000[Formula: see text]ft) and therefore allows a nearly unobstructed view of the visible and infrared universe at wavelengths between 0.4[Formula: see text]μm and 1600[Formula: see text]μm. The Focal Plane Imager (FPI+) is SOFIA’s main tracking camera. It uses a commercial, off-the-shelf camera with a thermoelectrically cooled EMCCD. The back-illuminated sensor has a peak quantum efficiency greater than 95% at 550[Formula: see text]nm and the dark current is as low as 0.001 e-/pix/sec. Since 2015, the FPI[Formula: see text] has been available to the community as a Facility Science Instrument (FSI), and can be used as a high speed photometer for events in the visual wavelength range. This paper presents a detailed overview of the design and optical configuration of the FPI+. Different settings and specifications of the camera are explained and the focal plane sensor is described. The camera’s performance in regards to sensitivity and frame rate is shown. The operation of the instrument is described as well as the support for guest observers throughout the process from proposing to data analysis. To date, SOFIA has conducted multiple FPI+ observations of stellar occultations, e.g. occultations by Pluto in 2011 and 2015, the occultation by 2014MU69 in July 2017 and the occultation by Triton in October 2017. Additionally, multiple observations of exo-planet transits have been observed with the FPI+. Throughout these observations, the FPI+ has proven to be an excellent photometer for astronomical events that have challenging requirements for sensitivity and temporal resolution.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49050282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
The upGREAT Dual Frequency Heterodyne Arrays for SOFIA 用于SOFIA的upGREAT双频外差阵列
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400147
C. Risacher, R. Güsten, J. Stutzki, H. Hübers, R. Aladro, A. Bell, C. Buchbender, D. Büchel, T. Csengeri, C. Durán, U. Graf, R. Higgins, C. Honingh, K. Jacobs, M. Justen, B. Klein, M. Mertens, Y. Okada, A. Parikka, P. Pütz, Nicolás Reyes, Nicolás Reyes, H. Richter, Oliver Ricken, D. Riquelme, N. Rothbart, N. Schneider, R. Simon, M. Wienold, H. Wiesemeyer, M. Ziebart, Paul Fusco, S. Rosner, S. Rosner, B. Wohler, B. Wohler
{"title":"The upGREAT Dual Frequency Heterodyne Arrays for SOFIA","authors":"C. Risacher, R. Güsten, J. Stutzki, H. Hübers, R. Aladro, A. Bell, C. Buchbender, D. Büchel, T. Csengeri, C. Durán, U. Graf, R. Higgins, C. Honingh, K. Jacobs, M. Justen, B. Klein, M. Mertens, Y. Okada, A. Parikka, P. Pütz, Nicolás Reyes, Nicolás Reyes, H. Richter, Oliver Ricken, D. Riquelme, N. Rothbart, N. Schneider, R. Simon, M. Wienold, H. Wiesemeyer, M. Ziebart, Paul Fusco, S. Rosner, S. Rosner, B. Wohler, B. Wohler","doi":"10.1142/S2251171718400147","DOIUrl":"https://doi.org/10.1142/S2251171718400147","url":null,"abstract":"We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution ([Formula: see text]) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has [Formula: see text] pixels (dual polarization), and presently covers the 1.83–2.07[Formula: see text]THz frequency range, which allows to observe the [CII] and [OI] lines at 158[Formula: see text][Formula: see text]m and 145[Formula: see text][Formula: see text]m wavelengths. The high frequency array (HFA) covers the [OI] line at 63[Formula: see text][Formula: see text]m and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7[Formula: see text]THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA’s instrument suite since observing cycle 6.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48242845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
A Review of Science Ground Operations for the Stratospheric Observatory for Infrared Astronomy (SOFIA) 平流层红外天文观测站(SOFIA)科学地面运行综述
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400020
Z. Ali, P. Alvarez, A. Cheng, K. Hanna, M. Kandlagunta, J. Lott, G. Perryman, L. Tanaka, C. Kaminski, M. Woodworth, J. Wong, N. McKown
{"title":"A Review of Science Ground Operations for the Stratospheric Observatory for Infrared Astronomy (SOFIA)","authors":"Z. Ali, P. Alvarez, A. Cheng, K. Hanna, M. Kandlagunta, J. Lott, G. Perryman, L. Tanaka, C. Kaminski, M. Woodworth, J. Wong, N. McKown","doi":"10.1142/S2251171718400020","DOIUrl":"https://doi.org/10.1142/S2251171718400020","url":null,"abstract":"The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5[Formula: see text]m telescope in a modified Boeing 747SP aircraft that is flown at high altitude to do unique astronomy in the infrared. SOFIA is a singular integration of aircraft operations, telescope design, and science instrumentation that delivers observational opportunities outside the capability of any other facility. The science ground operations are the transition and integration point of the science, aircraft, and telescope. We present the ground operations themselves and the tools used to prepare for mission success. Specifically, we will discuss operations from science instrument delivery to aircraft operation and mission readiness. We will also provide a discussion of instrument life cycle including maintenance and repair, both before and after acceptance by the observatory as well as retirement. Included in that will be a description of the facilities and their development, an overview of the SOFIA telescope assembly simulator, our deployment capabilities, as well as an outlook to the future of novel science instrument support for SOFIA.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48163508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Preface 前言
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/s2251171718020014
P. Temi
{"title":"Preface","authors":"P. Temi","doi":"10.1142/s2251171718020014","DOIUrl":"https://doi.org/10.1142/s2251171718020014","url":null,"abstract":"","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251171718020014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45915287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral and Spatial Characterization and Calibration of FIFI-LS — The Field Imaging Spectrometer on SOFIA SOFIA上FIFI-LS -场成像光谱仪的光谱和空间表征及标定
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/s2251171718400044
S. Colditz, S. Beckmann, A. Bryant, C. Fischer, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, W. Vacca
{"title":"Spectral and Spatial Characterization and Calibration of FIFI-LS — The Field Imaging Spectrometer on SOFIA","authors":"S. Colditz, S. Beckmann, A. Bryant, C. Fischer, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, W. Vacca","doi":"10.1142/s2251171718400044","DOIUrl":"https://doi.org/10.1142/s2251171718400044","url":null,"abstract":"The field-imaging far-infrared line spectrometer (FIFI-LS) is a science instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS allows simultaneous observations in two spectral channels. The “blue” channel is sensitive from 51[Formula: see text][Formula: see text]m to 125[Formula: see text][Formula: see text]m and the “red” channel from 115[Formula: see text][Formula: see text]m to 203[Formula: see text][Formula: see text]m. The instantaneous spectral coverage is 1000–3000[Formula: see text]km/s in the blue and 800–2500[Formula: see text]km/s in the red channel with a spectral resolution between 150[Formula: see text]km/s and 600[Formula: see text]km/s. Each spectral channel observes a field of five by five spatial pixels on the sky. The pixel size in the blue channel is 6.14 by 6.25 square arc seconds and it is 12.2 by 12.5 square arc seconds in the red channel. FIFI-LS has been operating on SOFIA since 2014. It is available to the astronomical community as a facility science instrument. We present the results of the spectral and spatial characterization of the instrument based on laboratory measurements. This includes the measured spectral resolution and examples of the line spread function in the spectral domain. In the spatial domain, a model of the instrument’s point spread function (PSF) and the description of a second pass ghost are presented. We also provide an overview of the procedures used to measure the instrument’s field of view geometry and spectral calibration. The spectral calibration yields an accuracy of 15–60[Formula: see text]km/s depending on wavelength.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251171718400044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47716003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
EXES: The Echelon-cross-echelle Spectrograph for SOFIA EXES: SOFIA的梯队-交叉梯队光谱仪
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400135
M. Richter, C. DeWitt, M. McKelvey, E. Montiel, R. Mcmurray, M. Case
{"title":"EXES: The Echelon-cross-echelle Spectrograph for SOFIA","authors":"M. Richter, C. DeWitt, M. McKelvey, E. Montiel, R. Mcmurray, M. Case","doi":"10.1142/S2251171718400135","DOIUrl":"https://doi.org/10.1142/S2251171718400135","url":null,"abstract":"The Echelon-cross-echelle spectrograph (EXES) is a high spectral resolution, mid-infrared spectrograph designed for and operated on the Stratospheric Observatory for Infrared Astronomy (SOFIA). EXES has multiple operational modes, but is optimized for high spectral resolution. The heart of the instrument is a one meter long, diamond-machined echelon grating. EXES also uses a 10242 Si:As detector optimized for low-background flux. We will discuss the design, operation and performance of EXES.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41600776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
FIFI-LS: The Field-Imaging Far-Infrared Line Spectrometer on SOFIA FIFI-LS:SOFIA上的场成像远红外线谱仪
IF 1.3
Journal of Astronomical Instrumentation Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400032
C. Fischer, S. Beckmann, A. Bryant, S. Colditz, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, C. Trinh, W. Vacca
{"title":"FIFI-LS: The Field-Imaging Far-Infrared Line Spectrometer on SOFIA","authors":"C. Fischer, S. Beckmann, A. Bryant, S. Colditz, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, C. Trinh, W. Vacca","doi":"10.1142/S2251171718400032","DOIUrl":"https://doi.org/10.1142/S2251171718400032","url":null,"abstract":"We describe the design of the Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS), operated as a Facility-Class instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS is an imaging spectrometer for medium resolution spectroscopy. Since being commissioned in 2014, it has performed over 50 SOFIA commissioning and science flights. After operating as a principal investigator instrument in 2014 and early 2015, it was accepted as a Facility Science Instrument in 2015. In addition to the description of the design, we report on the in-flight performance and the concept of operation. We also provide an overview of the science opportunities with FIFI-LS and describe how FIFI-LS observations complement and complete observations with the PACS instrument on the Herschel observatory.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46322716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信