S. Colditz, S. Beckmann, A. Bryant, C. Fischer, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, W. Vacca
{"title":"SOFIA上FIFI-LS -场成像光谱仪的光谱和空间表征及标定","authors":"S. Colditz, S. Beckmann, A. Bryant, C. Fischer, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, W. Vacca","doi":"10.1142/s2251171718400044","DOIUrl":null,"url":null,"abstract":"The field-imaging far-infrared line spectrometer (FIFI-LS) is a science instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS allows simultaneous observations in two spectral channels. The “blue” channel is sensitive from 51[Formula: see text][Formula: see text]m to 125[Formula: see text][Formula: see text]m and the “red” channel from 115[Formula: see text][Formula: see text]m to 203[Formula: see text][Formula: see text]m. The instantaneous spectral coverage is 1000–3000[Formula: see text]km/s in the blue and 800–2500[Formula: see text]km/s in the red channel with a spectral resolution between 150[Formula: see text]km/s and 600[Formula: see text]km/s. Each spectral channel observes a field of five by five spatial pixels on the sky. The pixel size in the blue channel is 6.14 by 6.25 square arc seconds and it is 12.2 by 12.5 square arc seconds in the red channel. FIFI-LS has been operating on SOFIA since 2014. It is available to the astronomical community as a facility science instrument. We present the results of the spectral and spatial characterization of the instrument based on laboratory measurements. This includes the measured spectral resolution and examples of the line spread function in the spectral domain. In the spatial domain, a model of the instrument’s point spread function (PSF) and the description of a second pass ghost are presented. We also provide an overview of the procedures used to measure the instrument’s field of view geometry and spectral calibration. The spectral calibration yields an accuracy of 15–60[Formula: see text]km/s depending on wavelength.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251171718400044","citationCount":"15","resultStr":"{\"title\":\"Spectral and Spatial Characterization and Calibration of FIFI-LS — The Field Imaging Spectrometer on SOFIA\",\"authors\":\"S. Colditz, S. Beckmann, A. Bryant, C. Fischer, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, W. Vacca\",\"doi\":\"10.1142/s2251171718400044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field-imaging far-infrared line spectrometer (FIFI-LS) is a science instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS allows simultaneous observations in two spectral channels. The “blue” channel is sensitive from 51[Formula: see text][Formula: see text]m to 125[Formula: see text][Formula: see text]m and the “red” channel from 115[Formula: see text][Formula: see text]m to 203[Formula: see text][Formula: see text]m. The instantaneous spectral coverage is 1000–3000[Formula: see text]km/s in the blue and 800–2500[Formula: see text]km/s in the red channel with a spectral resolution between 150[Formula: see text]km/s and 600[Formula: see text]km/s. Each spectral channel observes a field of five by five spatial pixels on the sky. The pixel size in the blue channel is 6.14 by 6.25 square arc seconds and it is 12.2 by 12.5 square arc seconds in the red channel. FIFI-LS has been operating on SOFIA since 2014. It is available to the astronomical community as a facility science instrument. We present the results of the spectral and spatial characterization of the instrument based on laboratory measurements. This includes the measured spectral resolution and examples of the line spread function in the spectral domain. In the spatial domain, a model of the instrument’s point spread function (PSF) and the description of a second pass ghost are presented. We also provide an overview of the procedures used to measure the instrument’s field of view geometry and spectral calibration. The spectral calibration yields an accuracy of 15–60[Formula: see text]km/s depending on wavelength.\",\"PeriodicalId\":45132,\"journal\":{\"name\":\"Journal of Astronomical Instrumentation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s2251171718400044\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2251171718400044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2251171718400044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Spectral and Spatial Characterization and Calibration of FIFI-LS — The Field Imaging Spectrometer on SOFIA
The field-imaging far-infrared line spectrometer (FIFI-LS) is a science instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS allows simultaneous observations in two spectral channels. The “blue” channel is sensitive from 51[Formula: see text][Formula: see text]m to 125[Formula: see text][Formula: see text]m and the “red” channel from 115[Formula: see text][Formula: see text]m to 203[Formula: see text][Formula: see text]m. The instantaneous spectral coverage is 1000–3000[Formula: see text]km/s in the blue and 800–2500[Formula: see text]km/s in the red channel with a spectral resolution between 150[Formula: see text]km/s and 600[Formula: see text]km/s. Each spectral channel observes a field of five by five spatial pixels on the sky. The pixel size in the blue channel is 6.14 by 6.25 square arc seconds and it is 12.2 by 12.5 square arc seconds in the red channel. FIFI-LS has been operating on SOFIA since 2014. It is available to the astronomical community as a facility science instrument. We present the results of the spectral and spatial characterization of the instrument based on laboratory measurements. This includes the measured spectral resolution and examples of the line spread function in the spectral domain. In the spatial domain, a model of the instrument’s point spread function (PSF) and the description of a second pass ghost are presented. We also provide an overview of the procedures used to measure the instrument’s field of view geometry and spectral calibration. The spectral calibration yields an accuracy of 15–60[Formula: see text]km/s depending on wavelength.
期刊介绍:
The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]