Journal of Structural Fire Engineering最新文献

筛选
英文 中文
Ductile connection to improve the fire performance of bare-steel and composite frames 延性连接可提高裸钢和复合材料框架的防火性能
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-12-06 DOI: 10.1108/jsfe-06-2021-0041
Yu Liu, Shan-Shan Huang, I. Burgess
{"title":"Ductile connection to improve the fire performance of bare-steel and composite frames","authors":"Yu Liu, Shan-Shan Huang, I. Burgess","doi":"10.1108/jsfe-06-2021-0041","DOIUrl":"https://doi.org/10.1108/jsfe-06-2021-0041","url":null,"abstract":"PurposeIn order to improve the robustness of bare-steel and composite structures in fire, a novel axially and rotationally ductile connection has been proposed in this paper.Design/methodology/approachThe component-based models of the bare-steel ductile connection and composite ductile connection have been proposed and incorporated into the software Vulcan to facilitate global frame analysis for performance-based structural fire engineering design. These component-based models are validated against detailed Abaqus FE models and experiments. A series of 2-D bare-steel frame models and 3-D composite frame models with ductile connections, idealised rigid and pinned connections, have been created using Vulcan to compare the fire performance of ductile connection with other connection types in bare-steel and composite structures.FindingsThe comparison results show that the proposed ductile connection can provide excellent ductility to accommodate the axial deformation of connected beam under fire conditions, thus reducing the axial forces generated in the connection and potentially preventing the premature brittle failure of the connection.Originality/valueCompared with conventional connection types, the proposed ductile connection exhibits considerable deformability, and can potentially enhance the robustness of structures in fire.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44822727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Assessment of a fire-damaged concrete overpass: the Verona bus crash case study 火灾损坏混凝土立交桥的评估:维罗纳公交车碰撞案例研究
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-12-02 DOI: 10.1108/jsfe-06-2021-0039
R. Felicetti
{"title":"Assessment of a fire-damaged concrete overpass: the Verona bus crash case study","authors":"R. Felicetti","doi":"10.1108/jsfe-06-2021-0039","DOIUrl":"https://doi.org/10.1108/jsfe-06-2021-0039","url":null,"abstract":"PurposeThis study aims to develop an assessment strategy for fire damaged infrastructures based on the implementation of quick diagnostic techniques and consistent interpretation procedures, so to determine the residual safety margin and any need for repair works.Design/methodology/approachIn this perspective, several tailored non-destructive test (NDT) methods have been developed in the past two decades, providing immediate results, with no need for time-consuming laboratory analyses. Moreover, matching their indications with the calculated effects of a tentative fire scenario allows harmonizing distinct pieces of evidence in the coherent physical framework of fire dynamics and heat transfer.FindingsThis approach was followed in the investigations on a concrete overpass in Verona (Italy) after a coach violently impacted one supporting pillar and caught fire in 2017. Technical specifications of the vehicle made it possible to bound the acceptable ranges for fire load and maximum rate of heat release, while surveillance video footage indicated the duration of the burning stage. Some established NDT methods (evaluation of discolouration, de-hydroxylation and rebar hardness) were implemented, together with advanced ultrasonic tests based on pulse refraction and pulse-echo tomography.Originality/valueThe results clearly showed the extension of the most damaged area at the intrados of the box girders and validated the maximum heating depth, as predicted by numerical analysis of the heat transient ensuing from the localized fire model.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45184161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improvement of fire door design using experimental and numerical modelling investigations 利用实验和数值模型研究改进防火门设计
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-11-23 DOI: 10.1108/jsfe-07-2021-0048
M. Khalifa, M. Aziz, M. Hamza, Saber Abdo, O. Gaheen
{"title":"Improvement of fire door design using experimental and numerical modelling investigations","authors":"M. Khalifa, M. Aziz, M. Hamza, Saber Abdo, O. Gaheen","doi":"10.1108/jsfe-07-2021-0048","DOIUrl":"https://doi.org/10.1108/jsfe-07-2021-0048","url":null,"abstract":"PurposeFire door should withstand a high temperature without deforming. In the current paper, the challenges of improving the behaviour of the conventional fire door were described using various internal stiffeners in pair swinging-type fire door.Design/methodology/approachThe temperature distribution on the outside door surface was measured with distributed eight thermocouples. Subsequently the internal side was cooled with pressurized water hose jet stream of 4 bar. The transient simulation for the thermal and structure analysis was conducted using finite element modelling (FEM) with ANSYS 19. The selected cross sections during numerical simulation were double S, double C and hat omega stiffeners applied to 2.2 m and 3 m door length.FindingsDuring the FEM analysis, the maximum deformations were 7.2028, 5.4299, 5.023 cm for double S, double C and hat omega stiffeners for 2.2 m door length and 6.57, 4.26, 2.1094 cm for double S, double C and hat omega stiffeners for 3 m door length. Finally, hat omega gives more than three times reduction in the deformation of door compared to double S stiffeners which provided a reference data to the manufacturers.Research limitations/implicationsThe research limitation included the limited number of fire door tests due to the high cost of single test, and the research implication was to achieve an optimal study in fire door design.Practical implicationsAchieving the optimum design for the internal door stiffeners where the hat omega stiffener gives minimum door deformation compared to the other stiffeners was considered the practical implication. The work included two experimental fire door tests according to the standard fire test (ANSI/UL 10C – Positive Pressure of Fire Tests of Door Assemblies) for a door of 2.2 m length with double S stiffeners and a door of 3 m length with hat omega stiffeners, which achieved minimum deformation.Originality/valueThe behavior and mechanical response of door leaf were improved through using internal hat omega stiffeners under fire testing. This study was achieved using FEM in ANSYS 19 for six cases of different lengths and stiffeners for fire doors. The simulation model showed a very close agreement with the experimental results with an error of 0.651% for double S and 1.888% for hat omega.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42902761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire buckling curves for torsionally sensitive steel members subjected to axial compression 轴压作用下扭敏钢构件的火灾屈曲曲线
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-10-27 DOI: 10.1108/jsfe-06-2021-0034
L. Possidente, N. Tondini, Jean-Marc Battini
{"title":"Fire buckling curves for torsionally sensitive steel members subjected to axial compression","authors":"L. Possidente, N. Tondini, Jean-Marc Battini","doi":"10.1108/jsfe-06-2021-0034","DOIUrl":"https://doi.org/10.1108/jsfe-06-2021-0034","url":null,"abstract":"PurposeBuckling should be carefully considered in steel assemblies with members subjected to compressive stresses, such as bracing systems and truss structures, in which angles and built-up steel sections are widely employed. These type of steel members are affected by torsional and flexural-torsional buckling, but the European (EN 1993-1-2) and the American (AISC 360-16) design norms do not explicitly treat these phenomena in fire situation. In this work, improved buckling curves based on the EN 1993-1-2 were extended by exploiting a previous work of the authors. Moreover, new buckling curves of AISC 360-16 were proposed.Design/methodology/approachThe buckling curves provided in the norms and the proposed ones were compared with the results of numerical investigation. Compressed angles, tee and cruciform steel members at elevated temperature were studied. More than 41,000 GMNIA analyses were performed on profiles with different lengths with sections of class 1 to 3, and they were subjected to five uniform temperature distributions (400–800 C) and with three steel grades (S235, S275, S355).FindingsIt was observed that the actual buckling curves provide unconservative or overconservative predictions for various range of slenderness of practical interest. The proposed curves allow for safer and more accurate predictions, as confirmed by statistical investigation.Originality/valueThis paper provides new design buckling curves for torsional and flexural-torsional buckling at elevated temperature since there is a lack of studies in the field and the design standards do not appropriately consider these phenomena.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45210024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear resistance of sandwich panel connection at elevated temperature 夹芯板连接在高温下的抗剪性能
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-10-14 DOI: 10.1108/jsfe-03-2021-0013
K. Cábová, M. Garifullin, Ashkan Shoushtarian Mofrad, F. Wald, K. Mela, Y. Ciupack
{"title":"Shear resistance of sandwich panel connection at elevated temperature","authors":"K. Cábová, M. Garifullin, Ashkan Shoushtarian Mofrad, F. Wald, K. Mela, Y. Ciupack","doi":"10.1108/jsfe-03-2021-0013","DOIUrl":"https://doi.org/10.1108/jsfe-03-2021-0013","url":null,"abstract":"PurposeSandwich construction has developed and has become an integral part of lightweight construction. In the recent projects, it has been shown that by using sandwich panels as stabilizing members, a considerable amount of savings of steel can be achieved for structural members at ambient temperature. These stabilizing effects may also help to achieve similar savings in case of fire.Design/methodology/approachThe response of a sandwich single panel as well as the behaviour of the whole structure at ambient temperature and in case of fire is influenced by joints between the sandwich panels and the sub-structure. The fastenings used to fix the sandwich panels to a sub-structure may be loaded by shear forces caused by self-weight, live loads or diaphragm action. Therefore, an experimental investigation was conducted to investigate the shear behaviour of sandwich panel joints in fire.FindingsThis paper summarized briefly the experimental results, numerical simulations and analytical models on the shear behaviour of sandwich panel joints at ambient and elevated temperatures.Research limitations/implicationsThe work is limited to studied types of screws and sandwich panels which are generally used in current sandwich construction.Practical implicationsThese stabilizing effects in sandwich construction help to achieve savings in case of fire.Social implicationsSandwich construction has developed and has become an integral part of lightweight construction. In the recent projects, it has been shown that by using sandwich panels as stabilizing members, a considerable amount of savings of steel can be achieved for structural members at ambient temperature. These stabilizing effects help to achieve similar savings in case of fire.Originality/valueThis paper summarized briefly the experimental results, numerical simulations and analytical models on the shear behaviour of sandwich panel joints at ambient and elevated temperatures, which were not published yet.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44027117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hybrid concretes: solutions for better bond and splitting tensile strength under elevated heat exposure 混合混凝土:在高温暴露下获得更好粘结和劈裂抗拉强度的解决方案
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-10-14 DOI: 10.1108/jsfe-02-2021-0010
H. Elkady, Ola M. Bakr, M. Kohail, E. A. Nasr
{"title":"Hybrid concretes: solutions for better bond and splitting tensile strength under elevated heat exposure","authors":"H. Elkady, Ola M. Bakr, M. Kohail, E. A. Nasr","doi":"10.1108/jsfe-02-2021-0010","DOIUrl":"https://doi.org/10.1108/jsfe-02-2021-0010","url":null,"abstract":"PurposeThis paper presents the second part of the investigation on resistance to elevated temperatures of a proposed hybrid composite concrete (NCSF-Crete) mix. The composite including nano metakaolin (NC) and steel fibers (SF) in addition to regular concrete components has proven -in the first published part-earlier promoted fresh concrete behavior, and to have reduced loss in compressive strength after exposure to a wide range of elevated temperatures. This presented work evaluates another two critical mechanical characteristics for the proposed composite -namely- splitting and bond strengths.Design/methodology/approachA modified formula correlating splitting and compressive strength (28 days) based on experiments results for NCSF is proposed and compared to formulas derived for regular concrete in different design codes. Finally, both spitting and bond strengths are evaluated pre- and post-exposure to elevated temperatures reaching 600 °C for two hours.FindingsThe proposed NCSF-Crete shows remarkable fire endurance, especially in promoting bond strength as after 600 °C heat exposure tests, it maintained strength equivalent to 70% of a regular concrete control mix at room temperature. Improving residual splitting strength was very significant up to 450 °C exposure.Research limitations/implicationsObvious deterioration is monitored in splitting resistance for all concretes at 600 °C.Practical implicationsThis proposed composite improved elevated heats resistance of the most significant concrete mechanical properties.Social implicationsUsing a more green and sustainable constituents in the composite.Originality/valueThe proposed composite gathers the merits of using NC and SF, each has been investigated separately as an addition to concrete mixes.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45225200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diatomaceous earth aggregates based composite masonry blocks for bushfire resistance 抗林火硅藻土集料基复合砌块
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-10-05 DOI: 10.1108/jsfe-07-2021-0047
Indunil Erandi Ariyaratne, Anthony Ariyanayagam, M. Mahendran
{"title":"Diatomaceous earth aggregates based composite masonry blocks for bushfire resistance","authors":"Indunil Erandi Ariyaratne, Anthony Ariyanayagam, M. Mahendran","doi":"10.1108/jsfe-07-2021-0047","DOIUrl":"https://doi.org/10.1108/jsfe-07-2021-0047","url":null,"abstract":"PurposeThis paper presents the details of a research study on developing composite masonry blocks using two types of mixes, conventional and lightweight mix, to enhance their fire/bushfire resistance and residual compressive strength.Design/methodology/approachComposite masonry blocks (390 × 190 × 90 mm) were fabricated using conventional cement–sand mix as the outer layer and lightweight cement–sand–diatomite mix as the inner layer. Material properties were determined, and all the mixes were proportioned by the absolute volume method. After 28 days of curing, density tests, compression tests before and after fire exposure and fire resistance tests of the developed blocks were conducted, and the results were compared with those of conventional cement–sand and cement–sand–diatomite blocks.FindingsDeveloped composite blocks satisfy density and compressive strength requirements for loadbearing lightweight solid masonry units. Fire resistance of the composite block is –/120/120, and no cracks appeared on the ambient side surface of the block after 3 h of fire exposure. Residual strength of the composite block is higher compared to cement–sand and cement–sand–diatomite blocks and satisfies the loadbearing solid masonry unit strength requirements.Practical implicationsComposite block developed in this research can be suggested as a suitable loadbearing lightweight solid masonry block for several applications in buildings in bushfire prone areas.Originality/valueLimited studies are available for composite masonry blocks in relation to their fire resistance and residual strength.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48857834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire performance of earthquake-damaged reinforced concrete columns: an experimental study 地震破坏钢筋混凝土柱的防火性能试验研究
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-09-21 DOI: 10.1108/jsfe-03-2021-0015
Hemanth Kumar Chinthapalli, A. Agarwal
{"title":"Fire performance of earthquake-damaged reinforced concrete columns: an experimental study","authors":"Hemanth Kumar Chinthapalli, A. Agarwal","doi":"10.1108/jsfe-03-2021-0015","DOIUrl":"https://doi.org/10.1108/jsfe-03-2021-0015","url":null,"abstract":"PurposeEarthquake tremors not only increase the chances of fire ignition but also hinder the fire-fighting efforts due to the damage to the lifelines of a city. Most of the international codes have independent recommendations for structural safety against earthquake and fire. However, the possibility of a multi-hazard event, such as fire following an earthquake is seldom addressed.Design/methodology/approachThis paper presents an experimental study of Reinforced Concrete (RC) columns in post-earthquake fire (PEF) conditions. An experimental approach is proposed that allows the testing of a column instead of a full structural frame. This approach allows us to control the loading and boundary conditions individually and facilitates the testing under a variety of these conditions. Also, it allows the structure to be tested until failure. The role of parameters, such as earthquake intensity, axial load ratio and the ductile detailing of the column on the earthquake damage and subsequently the fire performance of the structure, is studied in this research. Six RC column specimens are tested under a sequence of quasi-static earthquake loading, followed by combined fire and axial compression loading conditions.FindingsThe experiment results indicate that ductile detailed columns subjected to 4% or less lateral drift did not lose significant load-carrying capacity in fire conditions. A lateral drift of 6% caused significant damage to the columns and reduced the load-carrying capacity in fire conditions. The level of the axial load acting on the column at the time of earthquake loading was found to have a very significant effect on the extent of damage and reduction in column load capacity in fire conditions. The columns that were not detailed for a ductile behavior observed a more significant reduction in axial load carrying capacity in fire conditions.Research limitations/implicationsThis study is limited to columns of 230 mm size due to the limitations of the test setup. The applicability of these findings to larger column sections needs to be verified by developing a numerical analysis methodology and simulating other post-earthquake-fire tests available in the literature.Originality/valueThe experimental procedure proposed in this paper offers an alternative to the testing of a complete structural frame system for PEF behavior. In addition to the ease of conducting the tests, the procedure also allows much better control over the heating, structural loading and boundary conditions.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42119956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental characterization of a novel ventilation system for multi-story buildings with continuous curtain walls 具有连续幕墙的多层建筑新型通风系统的实验表征
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-09-15 DOI: 10.1108/jsfe-01-2021-0005
A. Fascetti, Alessandro Palladino
{"title":"Experimental characterization of a novel ventilation system for multi-story buildings with continuous curtain walls","authors":"A. Fascetti, Alessandro Palladino","doi":"10.1108/jsfe-01-2021-0005","DOIUrl":"https://doi.org/10.1108/jsfe-01-2021-0005","url":null,"abstract":"PurposeThe purpose of this paper is to present the results of an experimental campaign conducted on a recently developed fire protection system (FPS), specifically designed for installation on continuous glass curtain walls systems typical of multi-story buildings.Design/methodology/approachThe authors will first present the theoretical derivation of the relevant parameters to characterize and predict the fire evolution and probability of flashover, according to existing codes and standards. Then, the results of two full-scale tests will be presented in terms of temperature fields, thermal gradients and position of the neutral plane.FindingsThe experimental evidence shows how the proposed system is able to dramatically reduce internal temperatures in the rooms interested by the fire, also allowing for safer evacuation procedures by increasing the height of the neutral plane.Originality/valueThe novel window frame element comprises an automatic doubly convergent aperture system that induces ventilation in the compartment by increasing internal convection in the rooms subject to the fire. This allows for an efficient dispersion of hot gases and fumes and a drastic improvement in safety for both the occupants and firefighting operators. The theoretical results are then compared to the experimental evidence to evaluate the performance of the proposed ventilation system in the context of existing standards and design procedures.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49033948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical modelling of fire test with timber fire protection 木材防火试验的数值模拟
IF 1
Journal of Structural Fire Engineering Pub Date : 2021-09-07 DOI: 10.1108/jsfe-04-2021-0017
Vojtěch Šálek, K. Cábová, F. Wald, M. Jahoda
{"title":"Numerical modelling of fire test with timber fire protection","authors":"Vojtěch Šálek, K. Cábová, F. Wald, M. Jahoda","doi":"10.1108/jsfe-04-2021-0017","DOIUrl":"https://doi.org/10.1108/jsfe-04-2021-0017","url":null,"abstract":"PurposeThe purpose of this paper is to present a complex pyrolysis computational fluid dynamics (CFD) model of timber protection exposed to fire in a medium size enclosure. An emphasis is placed on rarely used temperature-dependent thermal material properties effecting the overall simulation outputs. Using the input dataset, a fire test model with oriented strand boards (OSB) in the room corner test facility is created in Fire Dynamics Simulator (FDS).Design/methodology/approachSeven FDS models comprising different complexity approaches to modelling the burning of wood-based materials, from a simplified model of burning based on a prescribed heat release rate to complex pyrolysis models which can describe the fire spread, are presented. The models are validated by the experimental data measured during a fire test of OSB in the room corner test facility.FindingsThe use of complex pyrolysis approach is recommended in real-scale enclosure fire scenarios with timber as a supplementary heat source. However, extra attention should be paid to burning material thermal properties implementation. A commonly used constant specific heat capacity and thermal conductivity provided poor agreement with experimental data. When the fire spread is expected, simplified model results should be processed with great care and the user should be aware of possible significant errors.Originality/valueThis paper brings an innovative and rarely used complex pyrolysis CFD model approach to predict the behaviour of timber protection exposed to fire. A study on different temperature-dependent thermal material properties combined with multi-step pyrolysis in the room corner test scenario has not been sufficiently published and validated yet.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62169034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信