Indunil Erandi Ariyaratne, Anthony Ariyanayagam, M. Mahendran
{"title":"Diatomaceous earth aggregates based composite masonry blocks for bushfire resistance","authors":"Indunil Erandi Ariyaratne, Anthony Ariyanayagam, M. Mahendran","doi":"10.1108/jsfe-07-2021-0047","DOIUrl":null,"url":null,"abstract":"PurposeThis paper presents the details of a research study on developing composite masonry blocks using two types of mixes, conventional and lightweight mix, to enhance their fire/bushfire resistance and residual compressive strength.Design/methodology/approachComposite masonry blocks (390 × 190 × 90 mm) were fabricated using conventional cement–sand mix as the outer layer and lightweight cement–sand–diatomite mix as the inner layer. Material properties were determined, and all the mixes were proportioned by the absolute volume method. After 28 days of curing, density tests, compression tests before and after fire exposure and fire resistance tests of the developed blocks were conducted, and the results were compared with those of conventional cement–sand and cement–sand–diatomite blocks.FindingsDeveloped composite blocks satisfy density and compressive strength requirements for loadbearing lightweight solid masonry units. Fire resistance of the composite block is –/120/120, and no cracks appeared on the ambient side surface of the block after 3 h of fire exposure. Residual strength of the composite block is higher compared to cement–sand and cement–sand–diatomite blocks and satisfies the loadbearing solid masonry unit strength requirements.Practical implicationsComposite block developed in this research can be suggested as a suitable loadbearing lightweight solid masonry block for several applications in buildings in bushfire prone areas.Originality/valueLimited studies are available for composite masonry blocks in relation to their fire resistance and residual strength.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jsfe-07-2021-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis paper presents the details of a research study on developing composite masonry blocks using two types of mixes, conventional and lightweight mix, to enhance their fire/bushfire resistance and residual compressive strength.Design/methodology/approachComposite masonry blocks (390 × 190 × 90 mm) were fabricated using conventional cement–sand mix as the outer layer and lightweight cement–sand–diatomite mix as the inner layer. Material properties were determined, and all the mixes were proportioned by the absolute volume method. After 28 days of curing, density tests, compression tests before and after fire exposure and fire resistance tests of the developed blocks were conducted, and the results were compared with those of conventional cement–sand and cement–sand–diatomite blocks.FindingsDeveloped composite blocks satisfy density and compressive strength requirements for loadbearing lightweight solid masonry units. Fire resistance of the composite block is –/120/120, and no cracks appeared on the ambient side surface of the block after 3 h of fire exposure. Residual strength of the composite block is higher compared to cement–sand and cement–sand–diatomite blocks and satisfies the loadbearing solid masonry unit strength requirements.Practical implicationsComposite block developed in this research can be suggested as a suitable loadbearing lightweight solid masonry block for several applications in buildings in bushfire prone areas.Originality/valueLimited studies are available for composite masonry blocks in relation to their fire resistance and residual strength.