{"title":"Machine learning-based synthesis of diagnostic algorithms for electromechanical actuators to improve the aerospace flight safety","authors":"G.S. Veresnikov , S.G. Bazhenov , I.G. Bashkirov , S.L. Chernyshev , V.I. Goncharenko , A.V. Skryabin , D.A. Petrov","doi":"10.1016/j.actaastro.2024.10.054","DOIUrl":"10.1016/j.actaastro.2024.10.054","url":null,"abstract":"<div><div>The relevance of research aimed at developing diagnostic technologies for electromechanical actuators is due to the need to improve flight safety in conditions of increasing intensity of highly electrified aircraft and spacecraft operations. The paper discusses one of the promising approaches to electromechanical actuator health management, which involves the use of machine learning methods to synthesize health monitoring algorithms. Machine learning methods make it possible to build classification models based on empirical data, which are used to generate recommendations for making operational decisions. Empirical data, which is a source of valuable experience and the basis of a training sample necessary for formalizing patterns in classification models, can be formed as a result of life tests, mathematical modeling, and actuator operation. In order to improve the safety of space flights, the article focuses on the integration of electromechanical actuator mathematical model methods, optimal space filling, and machine learning. Optimal space filling methods are used to reduce the computational costs associated with representative training sampling. Examples of developing classification models are given to determine failures associated with changes in gear (backlash, Coulomb friction and viscous friction) which is the most critical actuator link. As a result of computational studies, the main advantages of the proposed approach to the synthesis of electromechanical actuator health assessment algorithms are shown.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 239-247"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-23DOI: 10.1016/j.actaastro.2024.10.052
Carlo Sgorlon Gaiatto , Federico Antonello , Daniele Segneri , Bruno Sousa , Beatriz Abascal Palacios , Anna Schiavo , Mauro Bartesaghi , Jan Maass , Aniris Inojosa
{"title":"A novel physics-based computational framework to model spacecraft solar array power under degradation: Application to European Space Agency (ESA) Cluster mission","authors":"Carlo Sgorlon Gaiatto , Federico Antonello , Daniele Segneri , Bruno Sousa , Beatriz Abascal Palacios , Anna Schiavo , Mauro Bartesaghi , Jan Maass , Aniris Inojosa","doi":"10.1016/j.actaastro.2024.10.052","DOIUrl":"10.1016/j.actaastro.2024.10.052","url":null,"abstract":"<div><div>Accurate modeling and simulation (M&S) of spacecraft solar array power under degradation is essential for mission planning, remaining useful life assessment, and lifetime extension. A relevant example is ESA’s Cluster spacecraft fleet, launched in 2000 and operated at the European Space Operation Centre (ESOC), whose solar arrays have suffered severe degradation due to space radiation that has caused challenges to routine operations and mission planning. However, currently available physics-based and machine learning models have been proven ineffective in modeling the drastic reduction in power generation over the long operational life of the spacecraft.</div><div>In response to these limitations, this work introduces a framework to model solar array degradation and predict power generation. It embeds a novel simplified physics-based model and a meta-heuristic optimization algorithm which exploits domain-specific knowledge and monitoring data for robust model parameter calibration and accurate power generation predictions. The results show the effectiveness of the proposed approach in avoiding overfitting and providing an accurate estimate of Cluster solar array power evolution.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 341-348"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-23DOI: 10.1016/j.actaastro.2024.10.059
Yulong Feng , Jinglei Liu , Renjie Li , Huaming Jia , Yuhong Cui
{"title":"Modeling the elastic–plastic contact forces and deformations of nonrotationally symmetric lunar dust particles","authors":"Yulong Feng , Jinglei Liu , Renjie Li , Huaming Jia , Yuhong Cui","doi":"10.1016/j.actaastro.2024.10.059","DOIUrl":"10.1016/j.actaastro.2024.10.059","url":null,"abstract":"<div><div>The sharp morphological features of lunar dust particles generate significant elastic–plastic contact forces and deformations upon contact with material surfaces, which considerably affect the mechanical properties of lunar dust particles, including their contact, collision, adhesion, transport, and wear characteristics. Despite these severe effects, valid models considering the contact characteristics of typical sharp-featured lunar dust particles are currently lacking. This study proposes an elastic–plastic contact model for nonrotationally symmetric lunar dust particles showing typical sharp features. Detailed derivations of the expressions for various physical responses observed when lunar dust particles establish normal contacts with elastic and elastic–plastic half-spaces under adhesive conditions are also provided. These include derivations for elastic forces, elastic–plastic forces, contact areas, pull-off forces, residual displacements, and plastic deformation areas. Furthermore, the tangential pull-off force during the tangential loading of lunar dust particles is derived, and the tangential contact characteristics are explored. Comparisons of the results of the proposed model with those of previous experiments reveal that the proposed model shows errors of only 6.06 % and 1.03 % in the maximum indentation depth and residual displacement, respectively. These errors are substantially lower than those of conventional spherical models (60.30 % and 60.13 %, respectively), confirming the superior accuracy of the proposed model. Furthermore, the discrete element method is employed to analyze the effects of normal and tangential contacts, dynamic characteristics, and plastic deformations on the considered lunar dust particles. The results are then compared with those of existing contact models. They reveal that maximum elastic–plastic forces under normal contact conditions are positively correlated with the initial velocity but negatively correlated with the lateral angle. Furthermore, the tangential pull-off force is positively correlated with the normal force and surface energy. In addition, the contact duration of lunar dust particles is positively correlated with their initial velocities, while the residual displacement is negatively correlation. For instance, as the initial velocity increases from 10 to 50 m/s, the maximum elastic–plastic force increases from 37.64 to 321.72 mN. Comparisons of the proposed model with other contact models reveal that the maximum elastic–plastic force of the elastic–plastic triangular pyramid model is only 14.93 % that of the cylindrical model, 34.23 % that of the spherical model, and 76.27 % that of the conical model, indicating significant reductions in the maximum elastic–plastic force owing to the plastic deformations of particles with typical sharp features. Overall, the results of this study offer crucial insights into the mechanical characteristics of nonspherical lunar dust particles under","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 283-297"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-23DOI: 10.1016/j.actaastro.2024.10.051
Junlin Li , Yan Shen
{"title":"Experimental study on beam focusing of ionic liquid electrospray thruster with focus structure","authors":"Junlin Li , Yan Shen","doi":"10.1016/j.actaastro.2024.10.051","DOIUrl":"10.1016/j.actaastro.2024.10.051","url":null,"abstract":"<div><div>The application of Ionic Liquid Electrospray Thrusters (ILETs) in micro/nanosatellites is very promising. However, the divergent beam of ILETs significantly affects their performance, including thrust, specific impulse, lifetime, propulsion efficiency, and more. Therefore, in order to improve the performance of ILETs, it is essential to optimize the beam. In this study, a focus structure was designed and fabricated. A series of beam focusing experiments were performed using a conical porous tungsten emitter and the ionic liquid EMI-BF<sub>4</sub> as a propellant. The operational state of ILETs was demonstrated, with over 95 % of the beam composed of ions. After configuring the focus structure, the electric field in the emission region is weakened by the focus electrode, which has a certain negative effect on the starting voltage and emission current. Analysis of the beam focusing results showed that the focus structure reduced the beam divergence half-angle (half-angle) from 40° to 11° and concentrated the beam current within a half-angle of 7.3°. By estimating the thrust and specific impulse of the thruster, it was found that the focus structure could maximize the specific impulse by up to 22.4 % at the same voltage and increase it by approximately 23 % at the same power-to-thrust ratio. This focus structure demonstrated excellent focusing effect on a single conical emitter, making this research valuable as a reference for designing a focus structure for other types of emitters.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 827-838"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-22DOI: 10.1016/j.actaastro.2024.10.046
C. Cottenot , R. Beauchet , B. Boust , L. Prévost , Y. Batonneau , M. Bellenoue
{"title":"Influence of hydrogen peroxide catalyst grain size on performance and ageing","authors":"C. Cottenot , R. Beauchet , B. Boust , L. Prévost , Y. Batonneau , M. Bellenoue","doi":"10.1016/j.actaastro.2024.10.046","DOIUrl":"10.1016/j.actaastro.2024.10.046","url":null,"abstract":"<div><div>Two different diameters of Pt/Al<sub>2</sub>O<sub>3</sub> spherical catalysts (1 mm and 2 mm) for HTP 98 % decomposition were tested to compare the catalytic activity and catalyst ageing. Comparable decomposition performance efficiencies were obtained during thruster-like tests in a catalytic decomposition setup, even though the 1-mm showed a better reactivity and temperature rising time, including in cold-start operation. However, a rapid physical degradation accompanied by pressure peaks observed throughout testing of the 1-mm catalyst led to damage of the catalyst and apparition of fines, causing partial clogging of the bed.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 332-340"},"PeriodicalIF":3.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-21DOI: 10.1016/j.actaastro.2024.10.038
A. Kiverin, A. Yarkov, I. Yakovenko
{"title":"Explosion risks: Variety of deflagration-to-detonation transition scenarios in smooth tubes","authors":"A. Kiverin, A. Yarkov, I. Yakovenko","doi":"10.1016/j.actaastro.2024.10.038","DOIUrl":"10.1016/j.actaastro.2024.10.038","url":null,"abstract":"<div><div>In the framework of comprehensive assessment of explosion risks on board of spacecrafts and on the facilities of launch places, the paper is focused on the detailed analysis of particular scenarios of deflagration-to-detonation transition taking place in smooth tubes filled with acetylene-oxygen mixtures of different compositions. By means of precise numerical simulation it is demonstrated that various scenarios of detonation onset can take place depending on the mixture composition and its initial thermodynamic state. It is demonstrated that independent on the particular scenario always the basic mechanism of detonation onset via the formation of strong enough shock wave takes place. In more reactive mixtures the strong shock originates from the self-sustained process of joint pressure build up and reaction intensification exactly at the flame front. In less reactive mixtures the transient flow behavior leads to the shock waves generation and interaction. As a result, a brand new reaction kernel could arise in the area of shock waves interaction. In number of cases, that leads to the coupling between the shock wave and the newborn reaction front and results in the strong shock formation and further detonation onset.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 325-331"},"PeriodicalIF":3.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-20DOI: 10.1016/j.actaastro.2024.10.022
Prasad N. Dal, Suril V. Shah
{"title":"Joint acceleration based adaptive reactionless manipulation of closed-loop multi-arm space robot in post-capture phase","authors":"Prasad N. Dal, Suril V. Shah","doi":"10.1016/j.actaastro.2024.10.022","DOIUrl":"10.1016/j.actaastro.2024.10.022","url":null,"abstract":"<div><div>Space robots will play a crucial role in on-orbit operations like refuelling, servicing, and capture of debris. This paper focuses on capturing a non-cooperative target using a multi-arm space robot and its post-capture control. In the post-capture phase, a target object gets rigidly attached to end-effectors, and arms get into a closed-loop configuration, resulting in added constraints. Further, due to a target object’s unknown inertial parameters, system behaviour becomes unpredictable and poses difficulty in achieving reactionless manipulation to minimize base attitude disturbance. We present acceleration-based adaptive reactionless manipulation in the post-capture phase considering the unknown inertial parameter of a target. The regressor form required for adapting the joint states is derived using the acceleration-based approach. To update unknown parameters recursively immediately after impact, three methods, namely, recursive least square (RLS), weighted recursive least square (WRLS), and Kalman filter (KF), are used and compared. The efficacy of these methods has been demonstrated by using numerical studies of a dual-arm space robot that captures a non-cooperative target. Further, the acceleration-based and the velocity-based approaches are individually compared with RLS, WRLS and KF methods. Investigations have also been carried out to study the effects of change in ratios of base-to-target and base-to-robot masses, as well as angular velocities of a target.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 439-457"},"PeriodicalIF":3.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-19DOI: 10.1016/j.actaastro.2024.10.042
A.V. Zvyagin , A.S. Udalov
{"title":"Numerical search for the effective thermal conductivity of cracked media","authors":"A.V. Zvyagin , A.S. Udalov","doi":"10.1016/j.actaastro.2024.10.042","DOIUrl":"10.1016/j.actaastro.2024.10.042","url":null,"abstract":"<div><div>Spacecraft parts accumulate damage during operation and defects that are invariably present even in new designs may grow. This leads to changes in the behavior of individual parts of the space vehicle and, consequently, to the risk of fracture. A more accurate assessment of spacecraft safety requires internal defects to be included in the material models under consideration. One of the main hazardous effects on space objects is multiple temperature heating and cooling due to periodic action of solar rays. This paper presents a study of thermal conduction of media containing cracks. It is carried out with the help of a technique developed by the authors to determine the effective thermal conductivity of materials and based on approximate numerical solution of the steady-state thermal conduction problem for a three-dimensional medium with cracks by the boundary element method. This technique allows to obtain the distribution of the temperature field and heat flux density at any point of the body under consideration, as well as to calculate the effective parameters of materials with high accuracy at relatively low calculation time using ordinary personal computers of average power. The basis of the numerical method presented in this paper is the decomposition of the desired solution into a series of some pre-calculated analytical solutions of the heat conduction equations. The dependence of the effective thermal conductivity on the density of thermally insulated cracks was considered. The formula of this dependence is proposed. Verification of the proposed methodology was carried out by comparing the numerical results of a number of problems with the results of other authors.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 97-101"},"PeriodicalIF":3.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-19DOI: 10.1016/j.actaastro.2024.10.035
Hirohisa Kojima , Pavel M. Trivailo
{"title":"A novel tether-net configuration with double-linked bullets for suppressing reshrinking motion after full deployment","authors":"Hirohisa Kojima , Pavel M. Trivailo","doi":"10.1016/j.actaastro.2024.10.035","DOIUrl":"10.1016/j.actaastro.2024.10.035","url":null,"abstract":"<div><div>Tether-nets have attracted considerable attention as tools for capturing space debris. However, owing to the lack of aerodynamic drag to resist collapse in space, tether-nets tend to shrink back after deployment because of tension in the tether. Various strategies have been proposed to suppress this reshrinking motion before debris capture, such as equipping bullets with thruster modules to control their trajectory after ejection and incorporating a bullet ejection-angle adjustment mechanism. However, these approaches complicate the tether-net design and/or ejection systems. In this study, a novel tether-net configuration comprising double-linked bullets, wherein the inner and outer bullets are connected via a tether, was proposed to prevent the tether-net from reshrinking after full deployment. Upon full deployment, as the bullets start to rebound due to impulsive tension, the outer bullets fly outward, pulling the inner bullets and exchanging momentum to suppress their rebounding motion. The effectiveness of the double-linked bullets in suppressing the reshrinking motion of the tether-net was demonstrated by comparing the results with those obtained using typical single-linked bullets. Furthermore, the influence of the inner and outer bullet mass ratio on the tether-net deployment and reshrinking motion was numerically analyzed to identify the optimal mass ratio for effectively suppressing the reshrinking motion. The results indicate that a mass ratio of 1.0, or slightly less, between the outer and inner bullets is most effective in suppressing tether-net reshrinking.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 309-324"},"PeriodicalIF":3.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta AstronauticaPub Date : 2024-10-19DOI: 10.1016/j.actaastro.2024.10.034
Menghao Lyu, Lin Zhu, Shaobo Qu, Yanchong Liu, Li Liu, Zebing Zhou
{"title":"Decoupling method of self-gravity compensation based on spherical multipole expansion for space gravitational wave detectors","authors":"Menghao Lyu, Lin Zhu, Shaobo Qu, Yanchong Liu, Li Liu, Zebing Zhou","doi":"10.1016/j.actaastro.2024.10.034","DOIUrl":"10.1016/j.actaastro.2024.10.034","url":null,"abstract":"<div><div>In space gravitational wave detection missions, the gravity and its gradients produced by the spacecraft on the two Test Masses (TMs) are commonly referred to as the Self-Gravity(SG). It is an important source of TM disturbances in gravitational wave detection and other drag-free space missions and will affect the TM acceleration noise in many ways. The SG can be reduced by adding Balance Masses (BMs). But for typical space gravitational wave detectors, in which the sensitive axes of the two TMs are at an angle of <span><math><mrow><mn>60</mn><mo>°</mo></mrow></math></span>, the couplings of different SG components of two TMs make the gravity compensation process complicated in practice, which is normally an iterative process. This paper analyses the correspondence between the SG components of the two TMs and the spherical harmonics of different orders, and proposes a compensation method based on spherical multipole expansion. This method allows independent design of the BMs for most of the main SG components, without couplings and iterations. To verify this method, a self-gravity compensation simulation is carried out by using a demonstrating spacecraft structural model for TianQin gravitational wave detection mission. Three sets of BMs are designed on the outer surface of the inertial sensor vacuum chamber, to compensate for the two linear accelerations and one linear gradient that exceed the requirements. The results show that the SG components after compensation are two orders of magnitude lower than the initial level, and all the components meet the preliminary requirements of TianQin mission. This study could provide reference for the engineering design and development of the spacecraft and inertial sensor payload for space gravitational wave detection missions.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 679-686"},"PeriodicalIF":3.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}