极端环境先进航空材料研究进展与对策综述

IF 3.4 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE
Fang Xie , Yinghui Yang , Zhongxin Ping , Xiaobo Gong , Zeping Dong , Wanting Xu , Jianyong Yu , Wang Yao , Yuzhen Dong
{"title":"极端环境先进航空材料研究进展与对策综述","authors":"Fang Xie ,&nbsp;Yinghui Yang ,&nbsp;Zhongxin Ping ,&nbsp;Xiaobo Gong ,&nbsp;Zeping Dong ,&nbsp;Wanting Xu ,&nbsp;Jianyong Yu ,&nbsp;Wang Yao ,&nbsp;Yuzhen Dong","doi":"10.1016/j.actaastro.2025.08.011","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing number of deep space exploration missions, the harsh space environment imposes stringent demands on equipment reliability — a property that fundamentally depends on the long-term performance of structural materials. This review summarizes recent advances in thermal protection materials, ionizing radiation shielding materials, and atomic oxygen-resistant materials, while critically analyzing limitations of current technologies. To address these challenges, multilayer structural designs and hybrid smart materials, such as shape-memory polymers with self-healing capabilities, are proposed to mitigate combined space environmental threats. Specifically, the integration of artificial intelligence for predictive material optimization and additive manufacturing for the development of customized functional architectures is highlighted. Next-generation aerospace materials will evolve into lightweight, adaptive systems with embedded intelligence that enables real-time performance monitoring and autonomous repair. Consequently, the development of advanced aerospace composites is pivotal in driving the technological progress in deep space exploration and extending human capabilities in space.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"238 ","pages":"Pages 184-196"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress and strategies in advanced aerospace materials for extreme environments: A review\",\"authors\":\"Fang Xie ,&nbsp;Yinghui Yang ,&nbsp;Zhongxin Ping ,&nbsp;Xiaobo Gong ,&nbsp;Zeping Dong ,&nbsp;Wanting Xu ,&nbsp;Jianyong Yu ,&nbsp;Wang Yao ,&nbsp;Yuzhen Dong\",\"doi\":\"10.1016/j.actaastro.2025.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increasing number of deep space exploration missions, the harsh space environment imposes stringent demands on equipment reliability — a property that fundamentally depends on the long-term performance of structural materials. This review summarizes recent advances in thermal protection materials, ionizing radiation shielding materials, and atomic oxygen-resistant materials, while critically analyzing limitations of current technologies. To address these challenges, multilayer structural designs and hybrid smart materials, such as shape-memory polymers with self-healing capabilities, are proposed to mitigate combined space environmental threats. Specifically, the integration of artificial intelligence for predictive material optimization and additive manufacturing for the development of customized functional architectures is highlighted. Next-generation aerospace materials will evolve into lightweight, adaptive systems with embedded intelligence that enables real-time performance monitoring and autonomous repair. Consequently, the development of advanced aerospace composites is pivotal in driving the technological progress in deep space exploration and extending human capabilities in space.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"238 \",\"pages\":\"Pages 184-196\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576525005120\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525005120","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

随着深空探测任务的不断增多,恶劣的空间环境对设备的可靠性提出了严格的要求,而设备的可靠性从根本上取决于结构材料的长期性能。本文综述了热防护材料、电离辐射屏蔽材料和原子抗氧材料的最新进展,并批判性地分析了现有技术的局限性。为了应对这些挑战,提出了多层结构设计和混合智能材料,如具有自修复能力的形状记忆聚合物,以减轻综合空间环境威胁。具体而言,将人工智能集成到预测性材料优化和增材制造中,以开发定制功能架构。下一代航空航天材料将发展成为具有嵌入式智能的轻量化、自适应系统,能够实现实时性能监控和自主修复。因此,先进航空航天复合材料的发展对于推动深空探测技术进步和拓展人类空间能力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress and strategies in advanced aerospace materials for extreme environments: A review
With the increasing number of deep space exploration missions, the harsh space environment imposes stringent demands on equipment reliability — a property that fundamentally depends on the long-term performance of structural materials. This review summarizes recent advances in thermal protection materials, ionizing radiation shielding materials, and atomic oxygen-resistant materials, while critically analyzing limitations of current technologies. To address these challenges, multilayer structural designs and hybrid smart materials, such as shape-memory polymers with self-healing capabilities, are proposed to mitigate combined space environmental threats. Specifically, the integration of artificial intelligence for predictive material optimization and additive manufacturing for the development of customized functional architectures is highlighted. Next-generation aerospace materials will evolve into lightweight, adaptive systems with embedded intelligence that enables real-time performance monitoring and autonomous repair. Consequently, the development of advanced aerospace composites is pivotal in driving the technological progress in deep space exploration and extending human capabilities in space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信