{"title":"Ultrafast vibrational dynamics of the free OD at the air/water interface: Negligible isotopic dilution effect but large isotope substitution effect.","authors":"Mohammed Ahmed, S. Nihonyanagi, T. Tahara","doi":"10.1063/5.0085320","DOIUrl":"https://doi.org/10.1063/5.0085320","url":null,"abstract":"Vibrational relaxation dynamics of the OH stretch of water at the air/water interface has been a subject of intensive research, facilitated by recent developments in ultrafast interface-selective nonlinear spectroscopy. However, a reliable determination of the vibrational relaxation dynamics in the OD stretch region at the air/D2O interface has not been yet achieved. Here, we report a study of the vibrational relaxation of the free OD carried out by time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. The results obtained with the aid of singular value decomposition analysis indicate that the vibrational relaxation (T1) time of the free OD at the air/D2O interface and air/isotopically diluted water (HOD-H2O) interfaces show no detectable isotopic dilution effect within the experimental error, as in the case of the free OH in the OH stretch region. Thus, it is concluded that the relaxation of the excited free OH/OD predominantly proceeds with their reorientation, negating a major contribution of the intramolecular energy transfer. It is also shown that the T1 time of the free OD is substantially longer than that of the free OH, further supporting the reorientation relaxation mechanism. The large difference in the T1 time between the free OD and the free OH (factor of ∼2) may indicate the nuclear quantum effect on the diffusive reorientation of the free OD/OH because this difference is significantly larger than the value expected for a classical rotational motion.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123399821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rotational state specific dissociation dynamics of D2O via the C̃(010) state: The effect of bending vibrational excitation.","authors":"Yucheng Wu, Zhao-Han Zhang, Su-e Zhang, Zijie Luo, Yarui Zhao, Shuaikang Yang, Zhenxing Li, Yao Chang, Zhichao Chen, Shengrui Yu, Xueming Yang, Kaijun Yuan","doi":"10.1063/5.0091762","DOIUrl":"https://doi.org/10.1063/5.0091762","url":null,"abstract":"The rotational state resolved photodissociation dynamics of D2O via the C̃(010) state has been investigated by using the D-atom Rydberg tagging time-of-flight technique combined with a tunable vacuum ultraviolet light source. The D-atom action spectrum of the C̃(010) ← X̃(000) band and the corresponding time-of-flight (TOF) spectra of D-atom photoproducts formed following the excitation of D2O to individual rotational transition have been measured. By comparison with the action spectrum of the C̃(000) ← X̃(000) band, the bending vibrational constant of the C̃ state for D2O can be determined to be v2 = 1041.37 ± 0.71 cm-1. From the TOF spectra, the product kinetic energy spectra, the vibrational state distributions of OD products, and the state resolved anisotropy parameters have been determined. The experimental results indicate a dramatic variation in the OD product state distributions for different rotational excitations. This illuminates that there are two distinctive coupling channels from the C̃(010) state to the low-lying electronic states: the homogeneous electronic coupling to the Ã1B1 state, resulting in vibrationally hot OD(X) products, and the Coriolis-type coupling to the B̃1A1 state, producing vibrationally cold but rotationally hot OD(X) and OD(A) products. Furthermore, the three-body dissociation channel is confirmed, which is attributed to the C̃ → 1A2 or C̃ → Ã pathway. In comparison with the previous results of D2O photolysis via the C̃(000) state, it is found that the v2 vibration of the parent molecule enhances both the vibrational and rotational excitations of OD products.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130469711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural origin of excitations in a colloidal glass-former.","authors":"Divya Ganapathi, A. Sood, R. Ganapathy","doi":"10.1063/5.0088500","DOIUrl":"https://doi.org/10.1063/5.0088500","url":null,"abstract":"Despite decades of intense research, whether the transformation of supercooled liquids into glass is a kinetic phenomenon or a thermodynamic phase transition remains unknown. Here, we analyzed optical microscopy experiments on 2D binary colloidal glass-forming liquids and investigated the structural links of a prominent kinetic theory of glass transition. We examined a possible structural origin for localized excitations, which are building blocks of the dynamical facilitation theory-a purely kinetic approach for the glass transition. To accomplish this, we utilize machine learning methods to identify a structural order parameter termed \"softness\" that has been found to be correlated with reorganization events in supercooled liquids. Both excitations and softness qualitatively capture the dynamical slowdown on approaching the glass transition and motivated us to explore spatial and temporal correlations between them. Our results show that excitations predominantly occur in regions with high softness and the appearance of these high softness regions precedes excitations, thus suggesting a causal connection between them. Thus, unifying dynamical and thermodynamical theories into a single structure-based framework may provide a route to understand the glass transition.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131454867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. David, N. Ben Amor, Tao Zeng, N. Suaud, G. Trinquier, J. Malrieu
{"title":"Difficulty of the evaluation of the barrier height of an open-shell transition state between closed shell minima: The case of small C4n rings.","authors":"G. David, N. Ben Amor, Tao Zeng, N. Suaud, G. Trinquier, J. Malrieu","doi":"10.1063/5.0090129","DOIUrl":"https://doi.org/10.1063/5.0090129","url":null,"abstract":"C4n cyclacenes exhibit strong bond-alternation in their equilibrium geometry. In the two equivalent geometries, the system keeps an essentially closed-shell character. The two energy minima are separated by a transition state suppressing the bond-alternation, where the wave function is strongly diradical. This paper discusses the physical factors involved in this energy difference and possible evaluations of the barrier height. The barrier given as the energy difference between the restricted density functional theory (DFT)/B3LYP for the equilibrium and the broken symmetry DFT/B3LYP of the transition state is either negative or small, in contradiction with the most reliable Wave Function Theory calculations. The minimal (two electrons in two molecular orbitals) Complete Active Space self-consistent field (CASSCF) overestimates the barrier, and the subsequent second-order perturbation cancels it. Due to the collective character of the spin-polarization effect, it is necessary to perform a full π CASSCF + second-order perturbation to reach a reasonable value of the barrier, but this type of treatment cannot be applied to large molecules. DFT procedures treating on an equal foot the closed-shell and open-shell geometries have been explored, such as Mixed-Reference Spin-Flip Time-dependent-DFT and a new spin-decontamination proposal, namely, DFT-dressed configuration interaction, but the results still depend on the density functional. M06-2X without or with spin-decontamination gives the best agreement with the accurate wave function results.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131371039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum dynamics of the photoinduced charge separation in a symmetric donor-acceptor-donor triad: The role of vibronic couplings, symmetry and temperature.","authors":"D. Picconi","doi":"10.1063/5.0089887","DOIUrl":"https://doi.org/10.1063/5.0089887","url":null,"abstract":"The photoinduced charge separation in a symmetric donor-acceptor-donor (D-A-D) triad is studied quantum mechanically using a realistic diabatic vibronic coupling model. The model includes a locally excited DA*D state and two charge-transfer states D+A-D and DA-D+ and is constructed according to a procedure generally applicable to semirigid D-A-D structures and based on energies, forces, and force constants obtained by quantum chemical calculations. In this case, the electronic structure is described by time-dependent density functional theory, and the corrected linear response is used in conjunction with the polarizable continuum model to account for state-specific solvent effects. The multimode dynamics following the photoexcitation to the locally excited state are simulated by the hybrid Gaussian-multiconfigurational time-dependent Hartree method, and temperature effects are included using thermo field theory. The dynamics are connected to the transient absorption spectrum obtained in recent experiments, which is simulated and fully assigned from first principles. It is found that the charge separation is mediated by symmetry-breaking vibrations of relatively low frequency, which implies that temperature should be accounted for to obtain reliable estimates of the charge transfer rate.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"140 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123370795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Entropic surface segregation from athermal polymer blends: Polymer flexibility vs bulkiness.","authors":"M. Matsen","doi":"10.1063/5.0087587","DOIUrl":"https://doi.org/10.1063/5.0087587","url":null,"abstract":"We examine athermal binary blends composed of conformationally asymmetric polymers of equal molecular volume next to a surface of width ξ. The self-consistent field theory (SCFT) of Gaussian chains predicts that the more compact polymer with the shorter average end-to-end length, R0, is entropically favored at the surface. Here, we extend the SCFT to worm-like chains with small persistence lengths, ℓp, relative to their contour lengths, ℓc, for which R0≈2ℓpℓc. In the limit of ℓp ≪ ξ, we recover the Gaussian-chain prediction where the segregation depends only on the product ℓpℓc, but for realistic polymer/air surfaces with ξ ∼ ℓp, the segregation depends separately on the two quantities. Although the surface continues to favor flexible polymers with smaller ℓp and bulky polymers with shorter ℓc, the effect of bulkiness is more pronounced. This imbalance can, under specific conditions, lead to anomalous surface segregation of the more extended polymer. For this to happen, the polymer must be bulkier and stiffer, with a stiffness that is sufficient to produce a larger R0 yet not so rigid as to reverse the surface affinity that favors bulky polymers.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123306109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sample size dependence of tagged molecule dynamics in steady-state networks with bimolecular reactions: Cycle times of a light-driven pump.","authors":"Daniele Asnicar, Emanuele Penocchio, D. Frezzato","doi":"10.1063/5.0089695","DOIUrl":"https://doi.org/10.1063/5.0089695","url":null,"abstract":"Here, steady-state reaction networks are inspected from the viewpoint of individual tagged molecules jumping among their chemical states upon the occurrence of reactive events. Such an agent-based viewpoint is useful for selectively characterizing the behavior of functional molecules, especially in the presence of bimolecular processes. We present the tools for simulating the jump dynamics both in the macroscopic limit and in the small-volume sample where the numbers of reactive molecules are of the order of few units with an inherently stochastic kinetics. The focus is on how an ideal spatial \"compartmentalization\" may affect the dynamical features of the tagged molecule. Our general approach is applied to a synthetic light-driven supramolecular pump composed of ring-like and axle-like molecules that dynamically assemble and disassemble, originating an average ring-through-axle directed motion under constant irradiation. In such an example, the dynamical feature of interest is the completion time of direct/inverse cycles of tagged rings and axles. We find a surprisingly strong robustness of the average cycle times with respect to the system's size. This is explained in the presence of rate-determining unimolecular processes, which may, therefore, play a crucial role in stabilizing the behavior of small chemical systems against strong fluctuations in the number of molecules.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"30-31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133476435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accurate description of the quantum dynamical surface temperature effects on the dissociative chemisorption of H2 from Cu(111).","authors":"B. Smits, L. Litjens, M. Somers","doi":"10.1063/5.0094985","DOIUrl":"https://doi.org/10.1063/5.0094985","url":null,"abstract":"Accurately describing surface temperature effects for the dissociative scattering of H2 on a metal surface on a quantum dynamical (QD) level is currently one of the open challenges for theoretical surface scientists. We present the first QD simulations of hydrogen dissociating on a Cu(111) surface, which accurately describe all relevant surface temperature effects, using the static corrugation model. The reaction probabilities we obtain show very good agreement with those found using quasi-classical dynamics (QCD), both for individual surface slabs and for an averaged, thus Monte Carlo sampled, set of thermally distorted surface configurations. Rovibrationally elastic scattering probabilities show a much clearer difference between the QCD and QD results, which appears to be traceable back toward thermally distorted surface configurations with very low dissociation probabilities and underlines the importance of investigating more observables than just dissociation. By reducing the number of distorted surface atoms included in the dynamical model, we also show that only including one surface atom, or even three surface atoms, is generally not enough to accurately describe the effects of the surface temperature on dissociation and elastic scattering. These results are a major step forward in accurately describing hydrogen scattering from a thermally excited Cu(111) surface and open up a pathway to better describe reaction and scattering from other relevant crystal facets, such as stepped surfaces, at moderately elevated surface temperatures where quantum effects are expected to play a more important role in the dissociation of H2 on Cu.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"185 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133607072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianhang Xu, Ruiyi Zhou, Z. Tao, Christopher L. Malbon, V. Blum, S. Hammes‐Schiffer, Y. Kanai
{"title":"Nuclear-electronic orbital approach to quantization of protons in periodic electronic structure calculations.","authors":"Jianhang Xu, Ruiyi Zhou, Z. Tao, Christopher L. Malbon, V. Blum, S. Hammes‐Schiffer, Y. Kanai","doi":"10.1063/5.0088427","DOIUrl":"https://doi.org/10.1063/5.0088427","url":null,"abstract":"The nuclear-electronic orbital (NEO) method is a well-established approach for treating nuclei quantum mechanically in molecular systems beyond the usual Born-Oppenheimer approximation. In this work, we present a strategy to implement the NEO method for periodic electronic structure calculations, particularly focused on multicomponent density functional theory (DFT). The NEO-DFT method is implemented in an all-electron electronic structure code, FHI-aims, using a combination of analytical and numerical integration techniques as well as a resolution of the identity scheme to enhance computational efficiency. After validating this implementation, proof-of-concept applications are presented to illustrate the effects of quantized protons on the physical properties of extended systems, such as two-dimensional materials and liquid-semiconductor interfaces. Specifically, periodic NEO-DFT calculations are performed for a trans-polyacetylene chain, a hydrogen boride sheet, and a titanium oxide-water interface. The zero-point energy effects of the protons as well as electron-proton correlation are shown to noticeably impact the density of states and band structures for these systems. These developments provide a foundation for the application of multicomponent DFT to a wide range of other extended condensed matter systems.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126936055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasmon-driven oxidative coupling of aniline-derivative adsorbates: A comparative study of para-ethynylaniline and para-mercaptoaniline.","authors":"Kexun Chen, Hui Wang","doi":"10.1063/5.0094890","DOIUrl":"https://doi.org/10.1063/5.0094890","url":null,"abstract":"Plasmon-driven photocatalysis has emerged as a paradigm-shifting approach, based on which the energy of photons can be judiciously harnessed to trigger interfacial molecular transformations on metallic nanostructure surfaces in a regioselective manner with nanoscale precision. Over the past decade, the formation of aromatic azo compounds through plasmon-driven oxidative coupling of thiolated aniline-derivative adsorbates has become a testbed for developing detailed mechanistic understanding of plasmon-mediated photochemistry. Such photocatalytic bimolecular coupling reactions may occur not only between thiolated aniline-derivative adsorbates but also between their nonthiolated analogs. How the nonthiolated adsorbates behave differently from their thiolated counterparts during the plasmon-driven coupling reactions, however, remains largely unexplored. Here, we systematically compare an alkynylated aniline-derivative, para-ethynylaniline, to its thiolated counterpart, para-mercaptoaniline, in terms of their adsorption conformations, structural flexibility, photochemical reactivity, and transforming kinetics on Ag nanophotocatalyst surfaces. We employ surface-enhanced Raman scattering as an in situ spectroscopic tool to track the detailed structural evolution of the transforming molecular adsorbates in real time during the plasmon-driven coupling reactions. Rigorous analysis of the spectroscopic results, further aided by density functional theory calculations, lays an insightful knowledge foundation that enables us to elucidate how the alteration of the chemical nature of metal-adsorbate interactions profoundly influences the transforming behaviors of the molecular adsorbates during plasmon-driven photocatalytic reactions.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116676053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}