空气/水界面自由OD的超快振动动力学:同位素稀释效应可忽略,但同位素取代效应较大。

Mohammed Ahmed, S. Nihonyanagi, T. Tahara
{"title":"空气/水界面自由OD的超快振动动力学:同位素稀释效应可忽略,但同位素取代效应较大。","authors":"Mohammed Ahmed, S. Nihonyanagi, T. Tahara","doi":"10.1063/5.0085320","DOIUrl":null,"url":null,"abstract":"Vibrational relaxation dynamics of the OH stretch of water at the air/water interface has been a subject of intensive research, facilitated by recent developments in ultrafast interface-selective nonlinear spectroscopy. However, a reliable determination of the vibrational relaxation dynamics in the OD stretch region at the air/D2O interface has not been yet achieved. Here, we report a study of the vibrational relaxation of the free OD carried out by time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. The results obtained with the aid of singular value decomposition analysis indicate that the vibrational relaxation (T1) time of the free OD at the air/D2O interface and air/isotopically diluted water (HOD-H2O) interfaces show no detectable isotopic dilution effect within the experimental error, as in the case of the free OH in the OH stretch region. Thus, it is concluded that the relaxation of the excited free OH/OD predominantly proceeds with their reorientation, negating a major contribution of the intramolecular energy transfer. It is also shown that the T1 time of the free OD is substantially longer than that of the free OH, further supporting the reorientation relaxation mechanism. The large difference in the T1 time between the free OD and the free OH (factor of ∼2) may indicate the nuclear quantum effect on the diffusive reorientation of the free OD/OH because this difference is significantly larger than the value expected for a classical rotational motion.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultrafast vibrational dynamics of the free OD at the air/water interface: Negligible isotopic dilution effect but large isotope substitution effect.\",\"authors\":\"Mohammed Ahmed, S. Nihonyanagi, T. Tahara\",\"doi\":\"10.1063/5.0085320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibrational relaxation dynamics of the OH stretch of water at the air/water interface has been a subject of intensive research, facilitated by recent developments in ultrafast interface-selective nonlinear spectroscopy. However, a reliable determination of the vibrational relaxation dynamics in the OD stretch region at the air/D2O interface has not been yet achieved. Here, we report a study of the vibrational relaxation of the free OD carried out by time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. The results obtained with the aid of singular value decomposition analysis indicate that the vibrational relaxation (T1) time of the free OD at the air/D2O interface and air/isotopically diluted water (HOD-H2O) interfaces show no detectable isotopic dilution effect within the experimental error, as in the case of the free OH in the OH stretch region. Thus, it is concluded that the relaxation of the excited free OH/OD predominantly proceeds with their reorientation, negating a major contribution of the intramolecular energy transfer. It is also shown that the T1 time of the free OD is substantially longer than that of the free OH, further supporting the reorientation relaxation mechanism. The large difference in the T1 time between the free OD and the free OH (factor of ∼2) may indicate the nuclear quantum effect on the diffusive reorientation of the free OD/OH because this difference is significantly larger than the value expected for a classical rotational motion.\",\"PeriodicalId\":446961,\"journal\":{\"name\":\"The Journal of chemical physics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of chemical physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0085320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of chemical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0085320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,超快界面选择非线性光谱学的发展促进了水在空气/水界面上OH拉伸的振动弛豫动力学的深入研究。然而,在空气/D2O界面外径拉伸区域的振动松弛动力学尚未得到可靠的确定。在这里,我们报告了一项利用时间分辨外差检测的振动和频率产生光谱对自由OD的振动弛豫的研究。奇异值分解分析结果表明,在实验误差范围内,空气/D2O界面和空气/同位素稀释水(HOD-H2O)界面处的自由OD的振动弛豫(T1)时间与OH拉伸区自由OH的情况一样,没有明显的同位素稀释效应。因此,可以得出结论,受激发的自由OH/OD的弛豫主要是通过它们的重定向进行的,否定了分子内能量转移的主要贡献。自由OD的T1时间明显长于自由OH的T1时间,进一步支持了重取向弛豫机制。自由OD和自由OH在T1时间上的巨大差异(因子为~ 2)可能表明了自由OD/OH扩散重定向的核量子效应,因为这一差异明显大于经典旋转运动的预期值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrafast vibrational dynamics of the free OD at the air/water interface: Negligible isotopic dilution effect but large isotope substitution effect.
Vibrational relaxation dynamics of the OH stretch of water at the air/water interface has been a subject of intensive research, facilitated by recent developments in ultrafast interface-selective nonlinear spectroscopy. However, a reliable determination of the vibrational relaxation dynamics in the OD stretch region at the air/D2O interface has not been yet achieved. Here, we report a study of the vibrational relaxation of the free OD carried out by time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. The results obtained with the aid of singular value decomposition analysis indicate that the vibrational relaxation (T1) time of the free OD at the air/D2O interface and air/isotopically diluted water (HOD-H2O) interfaces show no detectable isotopic dilution effect within the experimental error, as in the case of the free OH in the OH stretch region. Thus, it is concluded that the relaxation of the excited free OH/OD predominantly proceeds with their reorientation, negating a major contribution of the intramolecular energy transfer. It is also shown that the T1 time of the free OD is substantially longer than that of the free OH, further supporting the reorientation relaxation mechanism. The large difference in the T1 time between the free OD and the free OH (factor of ∼2) may indicate the nuclear quantum effect on the diffusive reorientation of the free OD/OH because this difference is significantly larger than the value expected for a classical rotational motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信