{"title":"Adiabatic electronic flux in molecules and in condensed matter.","authors":"R. Resta","doi":"10.1063/5.0087883","DOIUrl":"https://doi.org/10.1063/5.0087883","url":null,"abstract":"The theory of adiabatic electron transport in a correlated condensed-matter system is rooted in a seminal paper by Niu and Thouless [J. Phys. A: Math. Gen. 17, 2453 (1984)]; I adopt here an analogous logic in order to retrieve the known expression for the adiabatic electronic flux in a molecular system [L. A. Nafie, J. Chem. Phys. 79, 4950 (1983)]. Its derivation here is considerably simpler than those available in the current quantum-chemistry literature; it also explicitly identifies the adiabaticity parameter, in terms of which the adiabatic flux and the electron density are both exact to first order. It is shown that the continuity equation is conserved to the same order. For the sake of completeness, I also briefly outline the relevance of the macroscopic electronic flux to the physics of solids and liquids.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126675962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A multiscale time-Laplace method to extract relaxation times from non-stationary dynamic light scattering signals.","authors":"François Liénard, É. Freyssingeas, P. Borgnat","doi":"10.1063/5.0088005","DOIUrl":"https://doi.org/10.1063/5.0088005","url":null,"abstract":"Dynamic Light Scattering (DLS) is a well-known technique to study the relaxation times of systems at equilibrium. In many soft matter systems, we actually have to consider non-equilibrium or non-stationary situations. We discuss here the principles, the signal processing techniques we developed, based on regularized inverse Laplace transform, sliding with time, and the light scattering signal acquisition, which enable us to use DLS experiments in this general situation. In this article, we show how to obtain such a time-Laplace analysis. We claim that this method can be adapted to numerous DLS experiments dealing with non-equilibrium systems so as to extract the non-stationary distribution of relaxation times. To prove that, we test this time-Laplace method on three different non-equilibrium processes or systems investigated by means of the DLS technique: the cooling kinetics of a colloidal particle solution, the sol-gel transition and the internal dynamics of a living cell nucleus.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131696700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bonding properties of molecular cerium oxides tuned by the 4f-block from ab initio perspective.","authors":"Ziyong Chen, J. Yang","doi":"10.1063/5.0090214","DOIUrl":"https://doi.org/10.1063/5.0090214","url":null,"abstract":"Probing chemical bonding in molecules containing lanthanide elements is of theoretical interest, yet it is computationally challenging because of the large valence space, relativistic effects, and considerable electron correlation. We report a high-level ab initio study that quantifies the many-body nature of Ce-O bonding with the coordination environment of the Ce center and particularly the roles of the 4f orbitals. The growing significance of the overlap between Ce 4f and O 2p orbitals with the increasing coordination of Ce atoms enhances Ce-O bond covalency and in return directs the molecular geometry. Upon partial reduction from neutral to anionic ceria, the excessive electrons populate the Ce-centered localized 4f orbital. The interplay between the admixture and localization of the 4f-block dually modulates bonding patterns of cerium oxide molecules, underlying the importance of many-body interactions between ligands and various lanthanide elements.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132384242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A local mode study of ring puckering effects in the infrared spectra of cyclopentane.","authors":"E. Sibert, P. Bernath","doi":"10.1063/5.0095010","DOIUrl":"https://doi.org/10.1063/5.0095010","url":null,"abstract":"We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas phase cyclopentane at -26.1 and -50 °C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians whose solutions lead to good agreement with the experiment at medium resolution, but which miss interesting line fractionation when compared to the high-resolution spectra. In contrast to the scissor motion, pseudorotation leads to significant state mixing of the CH stretches, which themselves are Fermi coupled to the scissor overtones.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128704571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Femtosecond-to-millisecond mid-IR spectroscopy of photoactive yellow protein uncovers structural micro-transitions of the chromophore's protonation mechanism.","authors":"L. V. van Wilderen, L. Blankenburg, J. Bredenbeck","doi":"10.1063/5.0091918","DOIUrl":"https://doi.org/10.1063/5.0091918","url":null,"abstract":"Protein structural dynamics can span many orders of magnitude in time. Photoactive yellow protein's (PYP) reversible photocycle encompasses picosecond isomerization of the light-absorbing chromophore as well as large scale protein backbone motions occurring on a millisecond timescale. Femtosecond-to-millisecond time-resolved mid-infrared spectroscopy is employed here to uncover structural details of photocycle intermediates up to chromophore protonation and the first structural changes leading to the formation of the partially unfolded signaling state pB. The data show that a commonly thought stable transient photocycle intermediate is actually formed after a sequence of several smaller structural changes. We provide residue-specific spectroscopic evidence that protonation of the chromophore on a few hundreds of microseconds timescale is delayed with respect to deprotonation of the nearby E46 residue. That implies that the direct proton donor is not E46 but most likely a water molecule. Such details may assist the ongoing photocycle and protein folding simulation efforts on the complex and wide time-spanning photocycle of the model system PYP.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117088846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DFT investigations of KTiOPO4Mx (M = K, Na, and Li) anodes for alkali-ion battery.","authors":"Jiajia Huang, Xu Cai, Yanli Li, Zhongpu Fang, Yi Li, Wei-hui Lin, Shuping Huang, Yongfan Zhang","doi":"10.2139/ssrn.4035322","DOIUrl":"https://doi.org/10.2139/ssrn.4035322","url":null,"abstract":"The properties of KTiOPO4Mx (M = K, Na, and Li; x = 0.000-1.000) as an anode for potassium-ion batteries (PIBs), sodium-ion batteries (SIBs), and lithium-ion batteries (LIBs) are investigated by density functional theory calculations. Our work reveals that the electrochemical performance of KTiOPO4 as an anode for PIBs is superior to that for SIBs and LIBs, in terms of average voltage and ion diffusion kinetics. The ab initio molecular dynamics simulations indicate that the KTiOPO4Mx anode exhibits high structural stability, and alkali ion intercalation contributes to accelerating ion diffusion during the charging process. Particularly, the low activation energy of 0.406 eV of K migration on surface KTP(210), obtained by the climbing-image nudged elastic band method, suggests a high-rate capability. The systematical comparison of the performance of KTiOPO4 as an anode for PIBs, SIBs, and LIBs on the theoretical perspective clarifies that a large channel is not always promising for small radius ion intercalation and diffusion.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128078549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temporal and chirp effects of laser pulses on the spectral line shape in sum-frequency generation vibrational spectroscopy.","authors":"Hui Wang, Xiao-Hua Hu, Hong-fei Wang","doi":"10.1063/5.0088506","DOIUrl":"https://doi.org/10.1063/5.0088506","url":null,"abstract":"Assignment and interpretation of the sum-frequency generation vibrational spectra (SFG-VS) depend on the ability to measure and understand the factors affecting the SFG-VS spectral line shape accurately and reliably. In the past, the formulation of the polarization selection rules for SFG-VS and the development of the sub-wavenumber high-resolution broadband SFG-VS (HR-BB-SFG-VS) have provided solutions for many of these needs. However, despite these advantages, HR-BB-SFG-VS have not been widely adopted. The majority of SFG measurements so far still relies on the picosecond (ps) scanning SFG-VS or the conventional broadband SFG-VS (BB-SFG-VS) with the spectral resolution around (mostly above) 10 cm-1, which also results in less ideal spectral line shape in the SFG spectra due to the temporal and chirp effects of the laser pulses used in experiment. In this study, the temporal and the chirp effects of laser pulses with different profiles in the SFG experiment on the measured SFG-VS spectral line shape are examined through spectral simulation. In addition, the experimental data of a classical model system, i.e., octadecyltrichlorosilane monolayer on glass, obtained from the ps scanning SFG-VS, the BB-SFG-VS, and the HR-BB-SFG-VS measurements are directly compared and examined. These results show that temporal and chirp effects are often significant in the conventional BB-SFG-VS, resulting in line shape distortions and peak position shifts besides spectral broadening. Such temporal and chirp effects are less significant in the ps scanning SFG-VS. For the HR-BB-SFG-VS, spectral broadening and temporal and chirp effects are insignificant, making HR-BB-SFG-VS the choice for accurate and reliable measurement and analysis of SFG-VS.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129694734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rotational excitation of NS+ by H2 revisited: A new global potential energy surface and rate coefficients.","authors":"C. Bop, Y. Kalugina, F. Lique","doi":"10.1063/5.0089745","DOIUrl":"https://doi.org/10.1063/5.0089745","url":null,"abstract":"Due to the lack of specific collisional data, the abundance of NS+ in cold dense interstellar clouds was determined using collisional rate coefficients of CS as a substitute. To better understand the chemistry of sulfur in the interstellar medium, further abundance modeling using the actual NS+ collisional rate coefficients is needed. For this purpose, we have computed the first full 4D potential energy surface of the NS+-H2 van der Waals complex using the explicitly correlated coupled cluster approach with single, double, and non-iterative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta basis set. The potential energy surface exhibits a global minimum of 848.24 cm-1 for a planar configuration of the complex. The long-range interaction energy, described using multipolar moments, is sensitive to the orientation of H2 up to radial distances of ∼50 a0. From this new interaction potential, we derived excitation cross sections, induced by collision with ortho- and para-H2, for the 15 low-lying rotational levels of NS+ using the quantum mechanical close-coupling approach. By thermally averaging these data, we determined downward rate coefficients for temperatures up to 50 K. By comparing them with the previous NS+-H2 data, we demonstrated that reduced dimensional approaches are not suited for this system. In addition, we found that the CS collisional data underestimate our results by up to an order of magnitude. The differences clearly indicate that the abundance of NS+, in cold dense clouds retrieved from observational spectra, must be reassessed using these new collisional rate coefficients.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128085881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break.","authors":"F. Cravero, M. Díaz, I. Ponzoni","doi":"10.1063/5.0087392","DOIUrl":"https://doi.org/10.1063/5.0087392","url":null,"abstract":"The artificial intelligence-based prediction of the mechanical properties derived from the tensile test plays a key role in assessing the application profile of new polymeric materials, especially in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure-property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124806944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Note: Reproducibility of potential energy surfaces of organic/metal interfaces on the example of PTCDA on Ag(111).","authors":"Lukas Hörmann, A. Jeindl, O. Hofmann","doi":"10.1063/5.0094163","DOIUrl":"https://doi.org/10.1063/5.0094163","url":null,"abstract":"We recently published a benchmark study of common local, semi-local, and non-local exchange correlation functionals in combination with various van der Waals (vdW) corrections, where we investigated the reproducibility of the potential energy surface of perylenetetracarboxylic dianhydride on Ag(111). This Note presents an additional benchmark of the recently developed non-local many body dispersion (MBD-NL) vdW correction, coupled with the Perdew-Burke-Ernzerhof (PBE) functional. We find that this computation method shows similar performance as the established approaches. Notably, it yields very similar results as PBE + MBD.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117189823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}