{"title":"Investigation of impact dynamics of ionically crosslinking hydrogel droplets in mist-based 3D bioprinting systems","authors":"E. Madadian, S. Badr, A. Ahmadi","doi":"10.32393/csme.2021.250","DOIUrl":"https://doi.org/10.32393/csme.2021.250","url":null,"abstract":"","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128019595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Actual Microstructural Voids Generation In Finite Element Analysis Utilizing Computed Tomography Scan Of Highly Cross-Linked Epoxy","authors":"A. Elruby, Stephen M. Handrigan, S. Nakhla","doi":"10.32393/csme.2021.156","DOIUrl":"https://doi.org/10.32393/csme.2021.156","url":null,"abstract":"Composite materials are widely used in several engineering fields such as automotive, aerospace and ship industries. The mechanical behavior of composites is superior to that of conventional metals regarding strength/stiffness-to-weight ratios. However, composite materials and especially fiber-reinforced polymers (FRP) usually suffer from complex failure modes. Two of which are dominated by the resin material. In the present work, computed tomography (CT) was utilized to characterize the microstructural voids content in a plain epoxy resin similar to the one used in aerospace applications. A Python script was developed and implemented within the mainstream finite element (FE) software Abaqus to generate actual microstructural FE model employing computed tomography (CT) scan of highly cross-linked epoxy. The developed script enabled modeling sophisticated microstructural features such as micro-voids based on their actual physical aspects, i.e., size/location. Specimen sized models incorporating microstructural region(s) were used to investigate the material behavior and damage initiation at microscale lengths. The framework of extended finite element method (XFEM) was utilized to investigate the effect of microstructural voids on the damage process. The proposed algorithm is capable of generating a micromechanical model in less than one-minute runtime using moderate desktop computer. Prediction results proved excellent agreement compared to experimental data from the current investigation. Microstructural voids were observed to act as stress raisers and to trigger the damage process at micro-lengths and possibly leading to the final fracture.","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132528326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Preliminary Study Of The Light Intensity Influence On 4D Printed Temperature-Responsive Nipam Based Hydrogels","authors":"D. Solis, A. Czekanski","doi":"10.32393/csme.2021.226","DOIUrl":"https://doi.org/10.32393/csme.2021.226","url":null,"abstract":"—4D printing managed to overcome some of the limitations of its predecessor, the 3D printing process, by replacing rigid structures with structures capable of changing their shape over time. The responsive nature of the 4D printed structures is of interest to several areas, including tissue engineering, which aims to restore, maintain, and improve damaged tissues or whole organs. Among the range of materials commercially available, poly (N-isopropyl acrylamide) (NIPAM) stands out as a thermo-responsive polymer compatible with different cell cultures. As much as there is already some consolidated knowledge about the material, there is still a lot to be explored in terms of 4D bioprinting technologies capable of efficiently generating NIPAM thermo-responsive structures. This work explores the impact of light incidence on a NIPAM based hydrogel to be processed by digital light processing (DLP). With the aid of a power meter, tests were performed regarding the variation of luminosity incident on the hydrogel. It was concluded that a waiting time of 20 minutes is necessary until the light source reaches a steady state of light intensity supply, and the ideal energy intensity for polymerization of a NIPAM based hydrogel using Irgacure 2959 as a photoinitiator is approximately 22mW.","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"314 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133352119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brendon Entz, Daniel Franko, Seamus Woodward-George, Atharva Parag Kulkarni, Alexandra Hynes, S. Bast, Addi Amaya, Sean Maw, Christoper A Amaya
{"title":"Radsat-SK Cube-Satellite Frame Design","authors":"Brendon Entz, Daniel Franko, Seamus Woodward-George, Atharva Parag Kulkarni, Alexandra Hynes, S. Bast, Addi Amaya, Sean Maw, Christoper A Amaya","doi":"10.32393/csme.2021.239","DOIUrl":"https://doi.org/10.32393/csme.2021.239","url":null,"abstract":"","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134369302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developing More Accurate Models Of Tornados","authors":"Niall Bannigan, Leigh Orf, E. Savory","doi":"10.32393/csme.2021.133","DOIUrl":"https://doi.org/10.32393/csme.2021.133","url":null,"abstract":"","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"834 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133840261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect Of Stress Relieving On Water Droplet Erosion Behavior In X22Crmov12-1 Steel","authors":"R. Shaik, A. K. Gujba, M. Pugh, M. Medraj","doi":"10.32393/csme.2021.33","DOIUrl":"https://doi.org/10.32393/csme.2021.33","url":null,"abstract":"","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117055275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic Differentiation In The Automatic Generation Of The Linearized Equations Of Motion","authors":"B. Minaker","doi":"10.32393/csme.2021.13","DOIUrl":"https://doi.org/10.32393/csme.2021.13","url":null,"abstract":"","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124469117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic Finite Element Modelling Of Bone Anchored Hearing Aids","authors":"Mostafa Mohamed, L. Westover","doi":"10.32393/csme.2021.22","DOIUrl":"https://doi.org/10.32393/csme.2021.22","url":null,"abstract":"","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129994427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Popp, Vignesh Krishnan, Elijah Vautour, Max Bauer, Anna Wailand, Anthony Newton, Silas Eastwood, S. Chandrasekaran, R. Bauer
{"title":"Multi-Shaft Reaction Wheel Design For A 2U Cubesat","authors":"N. Popp, Vignesh Krishnan, Elijah Vautour, Max Bauer, Anna Wailand, Anthony Newton, Silas Eastwood, S. Chandrasekaran, R. Bauer","doi":"10.32393/csme.2021.34","DOIUrl":"https://doi.org/10.32393/csme.2021.34","url":null,"abstract":"— In this paper, a reaction wheel design is presented and proposed for use in Dalhousie University’s Low Earth Orbit Reconnaissance Imagery Satellite (LORIS) 2U CubeSat. After estimating a cumulative maximum disturbance torque of 7.16 × 10 -7 Nm in low Earth orbit, a flywheel design was developed with a momentum storage of 1.01 × 10 -2 Nms. The authors propose to machine the flywheel in a skate-wheel shape to provide a large inertia-to-mass ratio compared to solid-cylindrical designs. A novel three-shaft system is employed wherein a Brushless DC motor shaft is rigidly connected to a spline-toothed inner shaft which transmits power to an outer shaft rigidly fixed to the flywheel. The inner shaft provides torsional flexibility to the system and ultimately reduces the transfer of vibration due to shaft misalignments. Splines and back-to-back angular contact bearings accommodate axial and radial misalignments between the inner and outer shaft experienced during mounting and operation. Finite element analysis was employed to validate the design across worst-case loading scenarios including rocket launch and misaligned inner and outer shafts.","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129681144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial Neural Network Based Crystal Plasticity Framework To Simulate Flow Behavior In Aluminum Alloys","authors":"Usman Ali","doi":"10.32393/csme.2021.144","DOIUrl":"https://doi.org/10.32393/csme.2021.144","url":null,"abstract":"","PeriodicalId":446767,"journal":{"name":"Progress in Canadian Mechanical Engineering. Volume 4","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128228296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}