International Journal of Digital Crime and Forensics最新文献

筛选
英文 中文
Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning 基于信息物理融合和深度学习的网络通信信息安全保障
International Journal of Digital Crime and Forensics Pub Date : 2023-10-26 DOI: 10.4018/ijdcf.332858
Shi Cheng, Yan Qu, Chuyue Wang, Jie Wan
{"title":"Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning","authors":"Shi Cheng, Yan Qu, Chuyue Wang, Jie Wan","doi":"10.4018/ijdcf.332858","DOIUrl":"https://doi.org/10.4018/ijdcf.332858","url":null,"abstract":"The internet brings high efficiency and convenience to society; however, the issue of information security in network communication has significantly affected every aspect of the society. How to ensure the security of this network communication information has become an important research topic. This paper proposes a diagnosis and prediction method based on cyber-physical fusion and deep learning, such as LSTM and CNN, to diagnose and predict network security in a complex network environment. The experiment results showed that the accuracy of network security diagnosis of the LSTM method in the training set was approximately 80%/ After the CNN training process, it has the highest accuracy rate of 95% on the test data set. This paper analysed the nature of network security problems from the perspective of cyber-physical fusion. CNN-based method to diagnose network security can obtain results with a higher accuracy rate so that technicians can better take measures to protect network security.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135013624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UAV Edge Caching Content Recommendation Algorithm Based on Graph Neural Network 基于图神经网络的无人机边缘缓存内容推荐算法
International Journal of Digital Crime and Forensics Pub Date : 2023-10-25 DOI: 10.4018/ijdcf.332774
Wei Wang, Longxing Xing, Na Xu, Jiatao Su, Wenting Su, Jiarong Cao
{"title":"UAV Edge Caching Content Recommendation Algorithm Based on Graph Neural Network","authors":"Wei Wang, Longxing Xing, Na Xu, Jiatao Su, Wenting Su, Jiarong Cao","doi":"10.4018/ijdcf.332774","DOIUrl":"https://doi.org/10.4018/ijdcf.332774","url":null,"abstract":"When responding to emergencies such as sudden natural disasters, communication networks face challenges such as network traffic surge and complex geographic environments. Aiming at the problems of high transmission delay and insensitivity to user's preference in the current UAV edge caching strategy, this paper proposes a UAV caching content recommendation algorithm based on graph neural network. Firstly, the location of UAV is determined by clustering algorithm; secondly, the interest preferences of user nodes in the cluster are predicted by GCLRSAN model, and the UAV cache content is designed according to the result; finally, simulation experiments show that the model and algorithm proposed in this paper can effectively reduce the backhaul link overhead and outperform the comparison algorithms in the indexes such as accuracy rate, recall rate, cache hit rate, and transmission delay.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"5 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135168052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Task Offloading in Cloud-Edge Environments 云边缘环境下的任务卸载
International Journal of Digital Crime and Forensics Pub Date : 2023-10-12 DOI: 10.4018/ijdcf.332066
Suzhen Wang, Yongchen Deng, Zhongbo Hu
{"title":"Task Offloading in Cloud-Edge Environments","authors":"Suzhen Wang, Yongchen Deng, Zhongbo Hu","doi":"10.4018/ijdcf.332066","DOIUrl":"https://doi.org/10.4018/ijdcf.332066","url":null,"abstract":"Cloud computing involves transferring data to remote data centers for processing, which consumes significant network bandwidth and transmission time. Edge computing can effectively address this issue by processing tasks at edge nodes, thereby reducing the amount of data transmitted and enhancing the utilization of network bandwidth. This paper investigates intelligent task offloading under the three-layer architecture of cloud-edge-device to fully exploit the cloud-edge collaboration potential. Specifically, an optimization objective function is constructed by modelling the processing cost of all computing tasks. Additionally, asynchronous advantage actor-critic (A3C) algorithm is proposed under cloud-edge collaboration to solve the optimization problem of minimizing the sum of the weights of task offloading delay and energy consumption. Experimental results indicate that the algorithm can effectively utilize the computing resources of the cloud center, reduce task execution delay and energy consumption, and compare favourably with three existing task offloading methods.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MD-S3C3 MD-S3C3
IF 0.7
International Journal of Digital Crime and Forensics Pub Date : 2023-08-29 DOI: 10.4018/ijdcf.329219
Heng Pan, Yaoyao Zhang, Jianmei Liu, Xueming Si, Zhongyuan Yao, Liang Zhao
{"title":"MD-S3C3","authors":"Heng Pan, Yaoyao Zhang, Jianmei Liu, Xueming Si, Zhongyuan Yao, Liang Zhao","doi":"10.4018/ijdcf.329219","DOIUrl":"https://doi.org/10.4018/ijdcf.329219","url":null,"abstract":"In medical data sharing, the data access control authorities of the sharing entities and computing capabilities of the sharing platforms are asymmetric. This asymmetry leads to poor patient control over their data, privacy disclosure, and difficulties in tracking data sharing. This aarticle proposes a cooperation model of cloud and chain (CMCC) for the secure sharing of medical data. In the CMCC, the power equivalence of blockchain nodes limits the control authority asymmetry between doctors and patients in medical data sharing. Moreover, a cloud server is used to store medical data, and some of the node-side computations are handed over to the cloud, which addresses the asymmetric computing capability asymmetry between the cloud and ordinary nodes. Based on the CMCC, a secure medical data sharing scheme based on proxy re-encryption mechanism is proposed. This scheme realizes secure medical data sharing, especially the patient's complete control of the data. The security and performance analysis show that the proposed scheme outperforms the existing ones.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49139483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Crime Scene Reconstruction for Digital Forensic Analysis 数字法医分析的犯罪现场重建
IF 0.7
International Journal of Digital Crime and Forensics Pub Date : 2023-07-31 DOI: 10.4018/ijdcf.327358
Mathew Nicho, Maha Alblooki, Saeed AlMutiwei, Christopher D. McDermott, O. Ilesanmi
{"title":"A Crime Scene Reconstruction for Digital Forensic Analysis","authors":"Mathew Nicho, Maha Alblooki, Saeed AlMutiwei, Christopher D. McDermott, O. Ilesanmi","doi":"10.4018/ijdcf.327358","DOIUrl":"https://doi.org/10.4018/ijdcf.327358","url":null,"abstract":"The abundance of digital data within modern vehicles makes digital vehicle forensics (DVF) a promising subfield of digital forensics (DF), with significant potential for investigations. In this research, the authors apply DVF methodology to a SUV, simulating a real case by extracting and analyzing the data in the period leading up to an incident to evaluate the effectiveness of DVF in solving crime. The authors employ DVF approach to extract data to reveal evidential information for judicial evaluation and verdict. This data helped determine whether the incident represented an accident or an act of crime. This simulated case and the assumptions supported by the DVF evidence provides a compelling example of how law enforcement agencies can leverage DVF to collect and present evidence to relevant authorities. This form of forensics can assist government in planning for and regulating the deployment of DVF data, the judiciary in assessing the nature and admissibility of evidence, and vehicle manufacturers in complying with the regulations relating to the harvesting and retrieval of data.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42579618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abnormality Retrieval Method of Laboratory Surveillance Video Based on Deep Automatic Encoder 基于深度自动编码器的实验室监控视频异常检索方法
IF 0.7
International Journal of Digital Crime and Forensics Pub Date : 2023-07-07 DOI: 10.4018/ijdcf.325224
Dawei Zhang
{"title":"Abnormality Retrieval Method of Laboratory Surveillance Video Based on Deep Automatic Encoder","authors":"Dawei Zhang","doi":"10.4018/ijdcf.325224","DOIUrl":"https://doi.org/10.4018/ijdcf.325224","url":null,"abstract":"Aiming at the problem that abnormal behavior is difficult to distinguish from normal behavior, a retrieval method for abnormal behavior of laboratory security surveillance video based on deep automatic encoder is proposed. Firstly, the fuzzy median filtering algorithm is used to reduce the noise of the collected laboratory security surveillance video, and then the YUV spatial chromaticity difference method is used to divide the foreground and background of the video, and the illumination degree in the video is determined. The diagonal model and codebook clustering idea are used to compensate for global and local lighting mutations. Finally, the preprocessed video is input into the mixture model, which is based on the deep automatic encoder and combined with the Gaussian mixture model, and the abnormal behavior retrieval results are output. The experimental results show that the proposed method has good security surveillance video preprocessing effect, large AUC, small error rate of abnormal behavior retrieval, and high operation efficiency.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42831407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Metric for Automatic Code Generation Based on Dynamic Abstract Syntax Tree 基于动态抽象语法树的代码自动生成度量
IF 0.7
International Journal of Digital Crime and Forensics Pub Date : 2023-06-27 DOI: 10.4018/ijdcf.325062
Wenjun Yao, Ying Jiang, Yang Yang
{"title":"The Metric for Automatic Code Generation Based on Dynamic Abstract Syntax Tree","authors":"Wenjun Yao, Ying Jiang, Yang Yang","doi":"10.4018/ijdcf.325062","DOIUrl":"https://doi.org/10.4018/ijdcf.325062","url":null,"abstract":"In order to improve the efficiency and quality of software development, automatic code generation technology is the current focus. The quality of the code generated by the automatic code generation technology is also an important issue. However, existing metrics for code automatic generation ignore that the programming process is a continuous dynamic changeable process. So the metric is a dynamic process. This article proposes a metric method based on dynamic abstract syntax tree (DAST). More specifically, the method first builds a DAST through the interaction in behavior information between the automatic code generation tool and programmer. Then the measurement contents are extracted on the DAST. Finally, the metric is completed with contents extracted. The experiment results show that the method can effectively realize the metrics of automatic code generation. Compared with the MAST method, the method in this article can improve the convergence speed by 80% when training the model, and can shorten the time-consuming by an average of 46% when doing the metric prediction.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43006709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latest Trends in Deep Learning Techniques for Image Steganography 用于图像隐写的深度学习技术的最新趋势
IF 0.7
International Journal of Digital Crime and Forensics Pub Date : 2023-02-24 DOI: 10.4018/ijdcf.318666
Vijay Kumar, Sahil Sharma, Chandan Kumar, A. Sahu
{"title":"Latest Trends in Deep Learning Techniques for Image Steganography","authors":"Vijay Kumar, Sahil Sharma, Chandan Kumar, A. Sahu","doi":"10.4018/ijdcf.318666","DOIUrl":"https://doi.org/10.4018/ijdcf.318666","url":null,"abstract":"The development of deep convolutional neural networks has been largely responsible for the significant strides forward made in steganography over the past decade. In the field of image steganography, generative adversarial networks (GAN) are becoming increasingly popular. This study describes current development in image steganographic systems based on deep learning. The authors' goal is to lay out the various works that have been done in image steganography using deep learning techniques and provide some notes on the various methods. This study proposed a result that could open up some new avenues for future research in deep learning based on image steganographic methods. These new avenues could be explored in the future. Moreover, the pros and cons of current methods are laid out with several promising directions to define problems that researchers can work on in future research avenues.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48569718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Key Node Identification Based on Vulnerability Life Cycle and the Importance of Network Topology 基于脆弱性生命周期的关键节点识别及网络拓扑的重要性
IF 0.7
International Journal of Digital Crime and Forensics Pub Date : 2023-01-20 DOI: 10.4018/ijdcf.317100
Yuwen Zhu, Lei Yu
{"title":"Key Node Identification Based on Vulnerability Life Cycle and the Importance of Network Topology","authors":"Yuwen Zhu, Lei Yu","doi":"10.4018/ijdcf.317100","DOIUrl":"https://doi.org/10.4018/ijdcf.317100","url":null,"abstract":"The key network node identification technology plays an important role in comprehending unknown terrains and rapid action planning in network attack and defense confrontation. The conventional key node identification algorithm only takes one type of relationship into consideration; therefore, it is incapable of representing the characteristics of multiple relationships between nodes. Additionally, it typically disregards the periodic change law of network node vulnerability over time. In order to solve the above problems, this paper proposes a network key node identification method based on the vulnerability life cycle and the significance of the network topology. Based on the CVSS score, this paper proposes the calculation method of the vulnerability life cycle risk value, and identifies the key nodes of the network based on the importance of the network topology. Finally, it demonstrates the effectiveness of the method in the selection of key nodes through network instance analysis.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48131380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Implementation of Identity Verification Software Based on Deep Learning 基于深度学习的身份验证软件的设计与实现
IF 0.7
International Journal of Digital Crime and Forensics Pub Date : 2022-11-30 DOI: 10.4018/ijdcf.315796
Runde Yu, Xianwei Zhang, Yimeng Zhang, Jianfeng Song, Kang Liu, Q. Miao
{"title":"Design and Implementation of Identity Verification Software Based on Deep Learning","authors":"Runde Yu, Xianwei Zhang, Yimeng Zhang, Jianfeng Song, Kang Liu, Q. Miao","doi":"10.4018/ijdcf.315796","DOIUrl":"https://doi.org/10.4018/ijdcf.315796","url":null,"abstract":"Identity verification, a noncontact biometric identification technology, has important scientific significance in theoretical research and shows great practical value in national security, public safety, and finance. In view of this situation, this paper designs an identity verification software based on deep learning, which has been successfully applied to real-world applications. The central idea of the software can be summarized as follows: First, the lightweight multi-task cascaded convolutional network (MTCNN), which can learn correlations between face detection and alignment, is employed for face detection. The software then conducts face recognition with MobileFaceNet which is an efficient and lightweight neural network, reducing the hardware cost. The test results show that the software meets the design requirements and can complete the corresponding identity confirmation function.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"408 1","pages":"1-15"},"PeriodicalIF":0.7,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78014899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信