基于深度学习的身份验证软件的设计与实现

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Runde Yu, Xianwei Zhang, Yimeng Zhang, Jianfeng Song, Kang Liu, Q. Miao
{"title":"基于深度学习的身份验证软件的设计与实现","authors":"Runde Yu, Xianwei Zhang, Yimeng Zhang, Jianfeng Song, Kang Liu, Q. Miao","doi":"10.4018/ijdcf.315796","DOIUrl":null,"url":null,"abstract":"Identity verification, a noncontact biometric identification technology, has important scientific significance in theoretical research and shows great practical value in national security, public safety, and finance. In view of this situation, this paper designs an identity verification software based on deep learning, which has been successfully applied to real-world applications. The central idea of the software can be summarized as follows: First, the lightweight multi-task cascaded convolutional network (MTCNN), which can learn correlations between face detection and alignment, is employed for face detection. The software then conducts face recognition with MobileFaceNet which is an efficient and lightweight neural network, reducing the hardware cost. The test results show that the software meets the design requirements and can complete the corresponding identity confirmation function.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of Identity Verification Software Based on Deep Learning\",\"authors\":\"Runde Yu, Xianwei Zhang, Yimeng Zhang, Jianfeng Song, Kang Liu, Q. Miao\",\"doi\":\"10.4018/ijdcf.315796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identity verification, a noncontact biometric identification technology, has important scientific significance in theoretical research and shows great practical value in national security, public safety, and finance. In view of this situation, this paper designs an identity verification software based on deep learning, which has been successfully applied to real-world applications. The central idea of the software can be summarized as follows: First, the lightweight multi-task cascaded convolutional network (MTCNN), which can learn correlations between face detection and alignment, is employed for face detection. The software then conducts face recognition with MobileFaceNet which is an efficient and lightweight neural network, reducing the hardware cost. The test results show that the software meets the design requirements and can complete the corresponding identity confirmation function.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdcf.315796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.315796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

身份验证作为一种非接触式的生物特征识别技术,在理论研究上具有重要的科学意义,在国家安全、公共安全、金融等领域具有重要的实用价值。针对这种情况,本文设计了一种基于深度学习的身份验证软件,并成功应用于实际应用。该软件的核心思想可以概括如下:首先,将轻量级多任务级联卷积网络(MTCNN)用于人脸检测,该网络可以学习人脸检测与对齐之间的相关性。该软件利用MobileFaceNet进行人脸识别,MobileFaceNet是一种高效、轻量级的神经网络,降低了硬件成本。测试结果表明,该软件满足设计要求,能够完成相应的身份确认功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Implementation of Identity Verification Software Based on Deep Learning
Identity verification, a noncontact biometric identification technology, has important scientific significance in theoretical research and shows great practical value in national security, public safety, and finance. In view of this situation, this paper designs an identity verification software based on deep learning, which has been successfully applied to real-world applications. The central idea of the software can be summarized as follows: First, the lightweight multi-task cascaded convolutional network (MTCNN), which can learn correlations between face detection and alignment, is employed for face detection. The software then conducts face recognition with MobileFaceNet which is an efficient and lightweight neural network, reducing the hardware cost. The test results show that the software meets the design requirements and can complete the corresponding identity confirmation function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信