Task Offloading in Cloud-Edge Environments

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Suzhen Wang, Yongchen Deng, Zhongbo Hu
{"title":"Task Offloading in Cloud-Edge Environments","authors":"Suzhen Wang, Yongchen Deng, Zhongbo Hu","doi":"10.4018/ijdcf.332066","DOIUrl":null,"url":null,"abstract":"Cloud computing involves transferring data to remote data centers for processing, which consumes significant network bandwidth and transmission time. Edge computing can effectively address this issue by processing tasks at edge nodes, thereby reducing the amount of data transmitted and enhancing the utilization of network bandwidth. This paper investigates intelligent task offloading under the three-layer architecture of cloud-edge-device to fully exploit the cloud-edge collaboration potential. Specifically, an optimization objective function is constructed by modelling the processing cost of all computing tasks. Additionally, asynchronous advantage actor-critic (A3C) algorithm is proposed under cloud-edge collaboration to solve the optimization problem of minimizing the sum of the weights of task offloading delay and energy consumption. Experimental results indicate that the algorithm can effectively utilize the computing resources of the cloud center, reduce task execution delay and energy consumption, and compare favourably with three existing task offloading methods.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.332066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing involves transferring data to remote data centers for processing, which consumes significant network bandwidth and transmission time. Edge computing can effectively address this issue by processing tasks at edge nodes, thereby reducing the amount of data transmitted and enhancing the utilization of network bandwidth. This paper investigates intelligent task offloading under the three-layer architecture of cloud-edge-device to fully exploit the cloud-edge collaboration potential. Specifically, an optimization objective function is constructed by modelling the processing cost of all computing tasks. Additionally, asynchronous advantage actor-critic (A3C) algorithm is proposed under cloud-edge collaboration to solve the optimization problem of minimizing the sum of the weights of task offloading delay and energy consumption. Experimental results indicate that the algorithm can effectively utilize the computing resources of the cloud center, reduce task execution delay and energy consumption, and compare favourably with three existing task offloading methods.
云边缘环境下的任务卸载
云计算需要将数据传输到远程数据中心进行处理,这将消耗大量的网络带宽和传输时间。边缘计算可以通过在边缘节点处理任务来有效解决这一问题,从而减少数据传输量,提高网络带宽利用率。本文研究了云边缘设备三层架构下的智能任务卸载,以充分挖掘云边缘协作潜力。具体而言,通过对所有计算任务的处理成本建模,构建了优化目标函数。此外,在云边缘协同下,提出了异步优势actor-critic (A3C)算法,解决了任务卸载延迟和能耗权重之和最小的优化问题。实验结果表明,该算法能够有效利用云中心的计算资源,降低任务执行延迟和能耗,并与现有的三种任务卸载方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信