{"title":"Accurate Contact Modeling for Multi-rate Single-point Haptic Rendering of Static and Deformable Environments","authors":"T. Knott, T. Kuhlen","doi":"10.2312/vriphys.20151336","DOIUrl":"https://doi.org/10.2312/vriphys.20151336","url":null,"abstract":"Common approaches for the haptic rendering of complex scenarios employ multi-rate simulation schemes. Here, the collision queries or the simulation of a complex deformable object are often performed asynchronously on a lower frequency, while some kind of intermediate contact representation is used to simulate interactions on the haptic rate. However, this can produce artifacts in the haptic rendering when the contact situation quickly changes and the intermediate representation is not able to reflect the changes due to the lower update rate. We address this problem utilizing a novel contact model. It facilitates the creation of contact representations that are accurate for a large range of motions and multiple simulation time-steps. We handle problematic convex contact regions using a local convex decomposition and special constraints for convex areas. We combine our accurate contact model with an implicit temporal integration scheme to create an intermediate mechanical contact representation, which reflects the dynamic behavior of the simulated objects. Moreover, we propose a new iterative solving scheme for the involved constrained dynamics problems. We increase the robustness of our method using techniques from trust region-based optimization. Our approach can be combined with standard methods for the modeling of deformable objects or constraint-based approaches for the modeling of, for instance, friction or joints. We demonstrate its benefits with respect to the simulation accuracy and the quality of the rendered haptic forces in multiple scenarios.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132779701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Chentanez, Matthias Müller, M. Macklin, Tae-Yong Kim
{"title":"Grid-Free Surface Tracking on the GPU","authors":"N. Chentanez, Matthias Müller, M. Macklin, Tae-Yong Kim","doi":"10.2312/vriphys.20151338","DOIUrl":"https://doi.org/10.2312/vriphys.20151338","url":null,"abstract":"We present the first mesh-based surface tracker that runs entirely on the GPU. The surface tracker is both completely grid-free and fast which makes it suitable for the use in a large, unbounded domain. The key idea for handling topological changes is to detect and delete overlapping triangles as well as triangles that lie inside the volume. The holes are then joined or closed in a robust and efficient manner. Good mesh quality is maintained by a mesh improvement algorithm. In this paper we describe how all these steps can be parallelized to run efficiently on a GPU. The surface tracker is guaranteed to produce a manifold mesh without boundary. Our results show the quality and efficiency of the method in both Eulerian and Lagrangian liquid simulations. Our parallel implementation runs more than an order of magnitude faster than the CPU version.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"352 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131562663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactive Simulation of a Continuum Mechanics based Torsional Thread","authors":"K. Larsson, G. Wallgren, M. Larson","doi":"10.2312/PE/vriphys/vriphys10/049-058","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys10/049-058","url":null,"abstract":"This paper introduces a continuum mechanics based thread model for use in real-time simulation. The model includes both rotary inertia, shear deformation and torsion. It is based on a three-dimensi ...","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129621087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Bender, Arjan Kuijper, D. W. Fellner, É. Guérin, Eugen Dyck, E. Zell, Agnes Kohsik, P. Grewe, York Winter, M. Piefke, Mario Botsch
{"title":"OCTAVIS: An Easy-to-Use VR-System for Clinical Studies","authors":"J. Bender, Arjan Kuijper, D. W. Fellner, É. Guérin, Eugen Dyck, E. Zell, Agnes Kohsik, P. Grewe, York Winter, M. Piefke, Mario Botsch","doi":"10.2312/PE/vriphys/vriphys12/127-136","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys12/127-136","url":null,"abstract":"We present the OCTAVIS system, a novel virtual reality platform developed for rehabilitation and training of patients with brain function disorders. To meet the special requirements of clinical studies, our system has been designed with ease of use, patient safety, ease of maintenance, space and cost efficiency in mind. Patients are sitting on a rotating office chair in the center of eight touch screen displays arranged in octagon around them, thereby providing a 360◦ horizontal panorama view. Navigation is intuitively controlled through chair rotation and a joystick in the armrest. A touch interface enables easy object selection. The OCTAVIS system has been successfully deployed to four hospitals. We report first results of clinical studies conducted with patients and control groups, demonstrating that our system is immersive, easy to use, and supportive for rehabilitation purposes.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124899146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefan Band, Christoph Gissler, A. Peer, M. Teschner
{"title":"MLS Pressure Extrapolation for the Boundary Handling in Divergence-Free SPH","authors":"Stefan Band, Christoph Gissler, A. Peer, M. Teschner","doi":"10.2312/vriphys.20181068","DOIUrl":"https://doi.org/10.2312/vriphys.20181068","url":null,"abstract":"We propose a novel method to predict pressure values at boundary particles in incompressible divergence-free SPH simulations (DFSPH). Our approach employs Moving Least Squares (MLS) to predict the pressure at boundary particles. Therefore, MLS computes hyperplanes that approximate the pressure field at the interface between fluid and boundary particles. We compare this approach with two previous techniques. One previous technique mirrors the pressure from fluid to boundary particles. The other one extrapolates the pressure from fluid to boundary particles, but uses a gradient that is computed with Smoothed Particle Hydrodynamics (SPH). We motivate that gradient-based extrapolation is more accurate than mirroring. We further motivate that our proposed MLS gradient is less error prone than the SPH gradient at the boundary. In our experiments, we indicate artifacts in previous approaches. We show that these artifacts are significantly reduced with our approach resulting in simulation steps that can be twice as large compared to previous methods. We further present challenging and complex scenarios to illustrate the capabilities of the proposed boundary handling. CCS Concepts •Computing methodologies → Physical simulation; Massively parallel and high-performance simulations;","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129443705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physics-based Human Neck Simulation","authors":"Zhiping Luo, N. Pronost, A. Egges","doi":"10.2312/PE.vriphys.vriphys13.051-060","DOIUrl":"https://doi.org/10.2312/PE.vriphys.vriphys13.051-060","url":null,"abstract":"In deformable character animation, the skin deformation of the neck is important to reproduce believable facial animation. The neck also plays an important role in supporting the head in balance while generating the controlled head movements that are essential to many aspects of human behavior. However, neck animation is largely overlooked both in computer graphics and animation due to the complexity of the cervical anatomy. This paper presents a physical human neck model based on biomechanical modeling. Relevant anatomical structures part of a 3D model of the human musculoskeletal system are modeled as deformable or linked rigid bodies. We couple the soft-hard bodies using soft constraints via elastic springs and form a Lagrangian dynamic system. The simulation of dynamic skin deformation is achieved by automatically binding the skin vertices to underlying bodies in an anatomically correct manner. Experimental results are provided and show the high level of realism that our model offers. In addition, the simulation runs at interactive rates on a modern computer.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130789861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dirk Siegmund, Timotheos Samartzidis, N. Damer, A. Nouak, C. Busch
{"title":"Virtual Fitting Pipeline: Body Dimension Recognition, Cloth Modeling, and On-Body Simulation","authors":"Dirk Siegmund, Timotheos Samartzidis, N. Damer, A. Nouak, C. Busch","doi":"10.2312/vriphys.20141228","DOIUrl":"https://doi.org/10.2312/vriphys.20141228","url":null,"abstract":"This paper describes a solution for 3D clothes simulation on human avatars. The proposed approach consists of three parts, the collection of anthropometric human body dimensions, cloths scanning, and the simulation on 3D avatars. The simulation and human machine interaction has been designed for application in a passive InShop advertisement system. All parts have been evaluated and adapted under the aim of developing a low-cost automated scanning and post-production system. Human body dimension recognition was achieved by using a landmark detection based approach using both two 2D and 3D cameras for front and profile images. The human silhouettes extraction solution based on 2D images is expected to be more robust to multi-textured background surfaces than existing solutions. Eight measurements corresponding to the norm of body dimensions defined in the standard EN-13402 were used to reconstruct a 3D model of the human body. The performance is evaluated against the ground-truth of our newly acquired database. For 3D scanning of clothes, different scanning methods have been evaluated under apparel, quality and cost aspects. The chosen approach uses state of the art consumer products and describes how they can be combined to develop an automated system. The scanned cloths can be later simulated on the human avatars, which are created based on estimation of human body dimensions. This work concludes with software design suggestions for a consumer oriented solution such as a virtual fitting room using body metrics. A number of future challenges and an outlook for possible solutions are also discussed.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117060708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morten Engell-Nørregård, Søren Hauberg, Jérôe Lapuyade, Kenny Erleben, K. S. Pedersen
{"title":"Interactive Inverse Kinematics for Human Motion Estimation","authors":"Morten Engell-Nørregård, Søren Hauberg, Jérôe Lapuyade, Kenny Erleben, K. S. Pedersen","doi":"10.2312/PE/vriphys/vriphys09/077-084","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys09/077-084","url":null,"abstract":"We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion estimation system uses a single camera to esti-mate the motion of a human. The results show that inverse kinematics can significantly speed up the estimation process, while retaining a quality comparable to a full pose motion estimation system. Our novelty lies primarily in use of inverse kinematics to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"753 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116111115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandro Granados, J. Perháč, L. Rosby, Yee Mun Lee, G. Tan, T. C. Tan, J. Higham, N. Magnenat-Thalmann, N. Low-Beer, F. Bello
{"title":"See-through Visualisation for Training and Assessing Unsighted Physical Examinations","authors":"Alejandro Granados, J. Perháč, L. Rosby, Yee Mun Lee, G. Tan, T. C. Tan, J. Higham, N. Magnenat-Thalmann, N. Low-Beer, F. Bello","doi":"10.2312/vriphys.20171087","DOIUrl":"https://doi.org/10.2312/vriphys.20171087","url":null,"abstract":"Objective: Motivated by the limitations of being unable to provide feedback and adequately assess technical skills whilst training unsighted physical examinations, such as Digital Rectal Examinations (DRE), we present a see-through visualisation system that can be used with benchtop models widely available in medical schools. Methods: We use position and pressure sensors located on the examining finger and have implemented a Virtual Reality (VR) simulation learning tool consisting of registered 3D models of the benchtop, augmented with relevant surrounding pelvic anatomy. The proposed system was evaluated with six medical students and eleven consultants. Results: The system is stable, runs in real time, uses unobtrusive sensor coils and pads, is able to capture data from sensors at 40Hz and adequately translates and rotates the position of the examining finger aligned to the 3D models of the benchtop and surrounding anatomy. Both medical students and consultants recognised the educational value of being able to see-through and visualise surrounding relevant anatomy. Although novices are reported to be the group that could benefit the most from our system, it is crucial not to be over reliant on visual cues for too long and to develop a strategy for the adequate use of the see-through system. Conclusions: The proposed VR simulation system is intended to improve the experience of novices learning unsighted examinations by providing real-time feedback and visualisation, allowing trainees to reflect on their performance and permitting more adequate assessment of technical skills.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124297874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Sketch Recognition for Interaction in Virtual Environments","authors":"Dominik Rausch, I. Assenmacher, T. Kuhlen","doi":"10.2312/PE/vriphys/vriphys10/115-124","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys10/115-124","url":null,"abstract":"We present a comprehensive 3D sketch recognition framework for interaction within Virtual Environments that allows to trigger commands by drawing symbols, which are recognized by a multi-level analysis. It proceeds in three steps: The segmentation partitions each input line into meaningful segments, which are then recognized as a primitive shape, and finally analyzed as a whole sketch by a symbol matching step. The whole framework is configurable over well-defined interfaces, utilizing a fuzzy logic algorithm for primitive shape learning and a textual description language to define compound symbols. It allows an individualized interaction approach that can be used without much training and provides a good balance between abstraction and intuition. We show the real-time applicability of our approach by performance measurements.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"238 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123038884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}