{"title":"Effect of Specimens’ Height to Diameter Ratio on Unconfined Compressive Strength of Cohesive Soil","authors":"Haile Tsegay Gebresamuel, Damtew Tsige Melese, Y. Boru, Alemu Mosisa Legese","doi":"10.2478/sgem-2023-0001","DOIUrl":"https://doi.org/10.2478/sgem-2023-0001","url":null,"abstract":"Abstract The undrained shear strength (Su) and cohesion (Cu) of cohesive soils are frequently determined using an unconfined compression test. However, the test results are heavily dependent on specimen size. This causes uncertainty in geotechnical analyses, constitutive models, and designs by overestimating or underestimating the shear strength of cohesive soils. Therefore, the study aims to assess the effect of the height-to-diameter ratio on the unconfined compressive strength (UCS) of cohesive soil. The soil specimen was tested on a compacted cylindrical specimen at the maximum dry density and optimum moisture content with a height to diameter (H/D) ratio of 1–3 for 38, 50, and 100 mm specimen diameters. Disturbed sample specimens were considered for the laboratory program. Accordingly, the standard Proctor compaction test determines soil classification and compaction characteristics. The unconfined compression test was performed for undisturbed and compacted remolded states of various diameters of cohesive soil specimens to investigate the strength variation with the specimen variation in H/D ratio. The laboratory test results revealed that cohesive soil's unconfined compression strength value drops rapidly with height-to-diameter ratios and the soil specimens’ diameter increases. However, the UCS value was stable at H/D ratio from 1.75 to 2.25. As the specimens’ diameter and H/D ratio increased, the peak UCS value axial strain decreased. Similarly, the gap between the axial strains of peak UCS value for the smallest and the most significant H/D ratio decreased with increase in the specimens’ diameter.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"112 - 132"},"PeriodicalIF":0.6,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44997617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of fibre content on the geotechnical properties of peat","authors":"I. Chmielewska","doi":"10.2478/sgem-2023-0003","DOIUrl":"https://doi.org/10.2478/sgem-2023-0003","url":null,"abstract":"Abstract The purpose of the study was to determine the geotechnical properties of peat and relate them to the fibre content. Peat soil tested in this study was collected from the peatland in the north-eastern Poland, 250 km north-east of Warsaw. Peat samples were taken from eight different depths below the ground surface over an area of approximately 2500 m2. The research programme consisted of laboratory tests of the physical properties of peat and compressibility tests conducted in oedometers. Tests were performed in accordance with the current international and European standards using specialised research equipment. Based on the degree of decomposition, peat was divided into fibric (with more than 66% of fibres), hemic (fibre content from 33% to 66%) and sapric (less than 33% of plant fibres). The bulk and particle densities, natural water content, organic content, initial void ratio and the degree of decomposition were investigated as the physical properties of peat. Based on the oedometer tests, the constrained modulus, compression and secondary compression indexes were determined. It was concluded that the fibric peat is characterised by the lowest bulk and particle densities, the highest water and organic contents, void ratio and compressibility in comparison to hemic and sapric peat. The characteristics of peat have been related to the results presented in the literature.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"133 - 143"},"PeriodicalIF":0.6,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47238385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Temperature Field Effect on Dynamic Stability Response of Three-layered Annular Plates for Different Ratios of Imperfection","authors":"D. Pawlus","doi":"10.2478/sgem-2023-0005","DOIUrl":"https://doi.org/10.2478/sgem-2023-0005","url":null,"abstract":"Abstract The paper presents the temperature field effect on the dynamic stability problem of plates with imperfection. The main objective is to conduct numerical investigations which show the relations between the imperfection ratio and plate dynamic response in a thermal environment. The plate is composed of three layers: thin facings and a thicker core. The plate can be loaded mechanically and thermally or only thermally. The facings are mechanically compressed with the forces acting in a plane. The temperature field model is defined by the temperature difference, which occurs between the plate edges. Two plate models are examined as follows: built using the approximation methods – orthogonalization and finite differences – and composed of finite elements. The analytical and numerical solution procedure is the main one, which is the proposal to perform the problem analysis. The plate reaction is described by the obtained values of the critical temperature differences for plates loaded only thermally and by the critical mechanical loads and the corresponding temperature differences for plates loaded mechanically and subjected to the uncoupled temperature field. The effect of the plate imperfection ratio under time-dependent loads is shown by numerous observations and results, which are shown graphically. The importance of the imperfection ratio on the plate's dynamic stability response in complex loading conditions is studied.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"158 - 173"},"PeriodicalIF":0.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41935675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the Effect of Environment Acidity on Stabilized Expansive Clay","authors":"S. Jahromi, A. Noori","doi":"10.2478/sgem-2022-0022","DOIUrl":"https://doi.org/10.2478/sgem-2022-0022","url":null,"abstract":"Abstract In this article, the effects of environmental acidity on the mechanical and volumetric properties of cement-stabilized clay soils have been investigated through various tests on experimental scale. In this study, a problematic clay was chemically stabilized by cement under three treatment conditions including short term, medium term, and long term with different conditions varying from acid to alkaline environments, which were tested by different methods to evaluate their mechanical and volumetric behavior and properties. Mechanical characteristics assessment tests in this study include compaction tests, and unconfined compressive strength, which was conducted on samples under different conditions in terms of acidity and treatment time. The results of the study indicated that soil improvement by cement increases the mechanical strength and decreases the rate of soil swelling over time and treatment duration. However, the degree of acidity of the environment affects the chemical reactions of soil and cement, especially cement hydration, which causes changes in soil strength and volume variation due to swelling.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"14 - 27"},"PeriodicalIF":0.6,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68916819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comment On Energy-Efficient Alternative for Different Types of Traditional Soil Binders","authors":"Himanshu Jangde, Farhan Khan","doi":"10.2478/sgem-2022-0029","DOIUrl":"https://doi.org/10.2478/sgem-2022-0029","url":null,"abstract":"Abstract Due to urban sprawl, the demand for land has increased for the purpose of construction. It is unlikely that soil available at different construction sites will be suitable for designed structures. For improving the load-bearing capacity of the soil, different soil binders are used, which are present in distinct states. In this review, the authors have collected details about various binders, which are generally used in the soil stabilization, and their effect as a binding agent on the soil. In this article, the authors tried to review different traditional binders. After studying various research articles, the authors found that lime, ground-granulated blast slag (GGBS) polypropylene, polyurethane grouting, and asphalt mix are frequently used binders. However, the authors also gathered information about the negative environmental impact of these traditional soil binders, which led to the need for alternatives to these commonly used soil binders. To diminish this issue, different alternate hydraulic and non-hydraulic binders are discussed. The authors found alternatives to cement and lime with the alkali-activated material consisting of Na2O and silica modulus and belite-calcium sulfoaluminate ferrite, which is also known as “Aether™.” According to the research, both alternatives emit 20–30% less CO2 into the environment and also improve the compressive strength of the soil. The various studies promotes bitumen modification. Incorporating 20-mesh crumb rubber and bio-oil into the bitumen reduces its viscosity and improves its fatigue value. When waste oil is mixed with asphalt, it revitalizes the bitumen, improves fatigue resistance, and increases compressive strength. The soil particles treated by Eko soil are held together by enzymes, which give them the same strength as cement. Apart from that, low-carbon binders such as basic oxygen furnace slag, bamboo fiber, enzyme-based soil treatment, zebu manure for stabilization, and lignin-contained biofuels and coproducts are discussed. Replacing these traditional binders helps with energy savings. All waste products are recycled, and energy is saved by not manufacturing traditional binders. Additionally, energy is saved, which is required to avoid the detrimental effects of these conventional binders, making them energy-efficient alternate binders. The authors also summarize the methods used, impacts, and changes that occur in soil properties after using substitutes in place of traditional binders. From the review, the authors determined that different binders have various properties in terms of chemical and physical compositions, and they show different variations in terms of strength when added to soil with low bearing capacity or poor stability.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"72 - 87"},"PeriodicalIF":0.6,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48686190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertical and horizontal dynamic response of suction caisson foundations","authors":"Soumia Bouneguet, S. Messioud, D. Dias","doi":"10.2478/sgem-2022-0018","DOIUrl":"https://doi.org/10.2478/sgem-2022-0018","url":null,"abstract":"Abstract In this article, the dynamic response of suction caisson foundations is studied using a three-dimensional finite element model with an absorbing boundary. The adopted formulation is based on the substructuring method. This formulation has been applied to analyze the effect of soil–structure interaction on the dynamic response of the suction foundation as a function of the kind of load. The suction caisson foundations are embedded in viscoelastic homogenous soils and subjected to external harmonic forces. For each frequency, the dynamic impedance connects the applied forces to the resulting displacement. The constitutive elements of the system are modeled using the finite element volumes and shell elements. The numerical results for the dynamic response of the suction foundations are presented in terms of vertical and horizontal displacements as well as vertical and horizontal dynamic impedances. The results indicated that the overall dynamic response is highly affected by the suction caisson diameter, the soil stiffness variation, and the suction caisson length.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"1 - 13"},"PeriodicalIF":0.6,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48979832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Queen Arista Rosmania Putri Sumarsono, A. Munawir, Harimurti
{"title":"Comparative Analysis of Single Pile with Embedded Beam Row and Volume Pile Modeling under Seismic Load","authors":"Queen Arista Rosmania Putri Sumarsono, A. Munawir, Harimurti","doi":"10.2478/sgem-2022-0027","DOIUrl":"https://doi.org/10.2478/sgem-2022-0027","url":null,"abstract":"Abstract Indonesia is located between the Eurasian, Pacific, Philippines, and Indo-Australian plates. Various tectonic processes in the world and collisions between large plates and several small plates trigger many earthquakes in Indonesia. This study aimed to evaluate the response of bored piles in the Auditorium Building of Brawijaya University toward seismic loads through analytical and numerical approaches based on finite elements with 2D (embedded beam row) and 3D (volume pile) modeling, where the analysis approach of pile deformation and lateral resistance with numerical methods will depend on idealization of the model used. In addition, the lateral resistance was compared based on combination lateral loads, pile stiffness, and soil stiffness when the values were different. The 2D finite element analysis reduces lateral resistance but overestimated the deflection on the pile surface. This is because in the 2D finite element modeling with an embedded beam row that the friction factor represented by the spring can reduces the stiffness and the pile–soil is tangent, so that there is no slipping against each other. In addition, the 3D finite element analysis with volume pile modeling increases soil stiffness at greater depths and the friction factor (interface) can improve the interaction between the soil and pile.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"28 - 40"},"PeriodicalIF":0.6,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49465307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overstrength and ductility factors of XBF structures with pinned and fixed supports","authors":"D. Yahmi, T. Branci, A. Bouchaïr, E. Fournely","doi":"10.2478/sgem-2022-0028","DOIUrl":"https://doi.org/10.2478/sgem-2022-0028","url":null,"abstract":"Abstract In today's time, most seismic design codes are based on a linear elastic force-based approach that includes the nonlinear response (ductility and overstrength) of the structure through a reduction factor (named behavior factor q in Eurocode 8 [EC8]). However, the use of a prescribed q-factor that is constant for a given structural system may fail in providing structures with the same risk level. This paper focuses on the estimation of actual values of q-factor for X-braced steel frames (XBFs) designed according to the European codes and comparing these values to those suggested in EC8. For this purpose, a nonlinear pushover analysis has been performed. The effects of specific parameters, such as the stories number, the brace slenderness ratio, the local response of structural members, and the support type, are evaluated. The results show that the most important parameter that affects the q-factor is the brace slenderness ratio, while the support type has less effect on this factor. Furthermore, a local strength criterion has been proposed to implicitly ensure that the suggested value of the q-factor is conservative.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"41 - 54"},"PeriodicalIF":0.6,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44269073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bearing Capacity Evaluation of Shallow Foundations on Stabilized Layered Soil using ABAQUS","authors":"Avinash Bhardwaj, R. Sharma","doi":"10.2478/sgem-2022-0026","DOIUrl":"https://doi.org/10.2478/sgem-2022-0026","url":null,"abstract":"Abstract In this paper, the finite element method (FEM) is applied to calculate the bearing capacity of two footings having the aspect ratio L/B (where L and B are the length and width of the footing, respectively) equal to 1, 2 resting on one-layer and two-layer soil. Soil profile contains two soil types including sand and clay. The soil strip is 500mm × 500mm × 350mm; however, only a quarter of the model (250mm × 250mm × 350mm) is examined in the study. Two primary situations are investigated in this study. In the first situation, the one-layer system is supposed to be sandy soil with footing overlays on medium-dense sand. The soft clay/stabilized clayey layer is supposed to be on top of the sandy soil in the second condition, with the footing resting on top of the soft clay/stabilized clay. The influence of layer thickness, aspect ratio, and material property on the bearing capacity value and footing failure mechanism is studied for eight different combinations of layered soil. The bearing capacity for a one-layer case is also estimated, and it agrees well with Vesic (1973), Hansen (1970), and Terzaghi's (1943) equations. The bearing capacity of footings is observed to decline when the height of unstabilized clayey soil increases, and it increases when clayey soil is stabilized with molasses, waste foundry sand, and lime alone and in combination with each other.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"55 - 71"},"PeriodicalIF":0.6,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41480081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linda Bouacida, Sadok Feia, Sidali Denine, N. Della
{"title":"An analytical model to predict water retention curves for granular materials using the grain-size distribution curve","authors":"Linda Bouacida, Sadok Feia, Sidali Denine, N. Della","doi":"10.2478/sgem-2022-0025","DOIUrl":"https://doi.org/10.2478/sgem-2022-0025","url":null,"abstract":"Abstract The present work aims to propose a new analytical model intended to predict the water retention curves for granular materials based on data from tensiometric tests. Different analytical models have been used for the evaluation of soil water retention curves so far. It should be noted that the proposed model considers only one criterion in the selection of soils. This criterion is the physical property of particle distribution curve that can be used to determine the values of D50 and CU. In this study, the pore-access size distribution is investigated considering the effect of the coefficient of uniformity of sandy soils that were prepared with different density indexes (0.5, 0.7, and 0.9). Moreover, the proposed model equation is based on the physical properties of soil. This equation made it possible to describe the water retention curve and to estimate the pore-access size distribution without performing any experimental tests. The findings allowed asserting that the uniformity of the particle size curves corresponds to a good uniformity of the pore-access size distribution. In addition, it was revealed that the suction increased as the density index went up, which matches well with the experimental data. Moreover, it may clearly be noted that the distinctive retention properties of unsaturated soils can be observed on the abovementioned curves. Further, it was found that the ratio of the grain size over the pore-access size increased as the uniformity coefficient augmented.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"44 1","pages":"354 - 369"},"PeriodicalIF":0.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49456008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}