{"title":"不同类型传统土壤粘结剂的节能替代技术综述","authors":"Himanshu Jangde, Farhan Khan","doi":"10.2478/sgem-2022-0029","DOIUrl":null,"url":null,"abstract":"Abstract Due to urban sprawl, the demand for land has increased for the purpose of construction. It is unlikely that soil available at different construction sites will be suitable for designed structures. For improving the load-bearing capacity of the soil, different soil binders are used, which are present in distinct states. In this review, the authors have collected details about various binders, which are generally used in the soil stabilization, and their effect as a binding agent on the soil. In this article, the authors tried to review different traditional binders. After studying various research articles, the authors found that lime, ground-granulated blast slag (GGBS) polypropylene, polyurethane grouting, and asphalt mix are frequently used binders. However, the authors also gathered information about the negative environmental impact of these traditional soil binders, which led to the need for alternatives to these commonly used soil binders. To diminish this issue, different alternate hydraulic and non-hydraulic binders are discussed. The authors found alternatives to cement and lime with the alkali-activated material consisting of Na2O and silica modulus and belite-calcium sulfoaluminate ferrite, which is also known as “Aether™.” According to the research, both alternatives emit 20–30% less CO2 into the environment and also improve the compressive strength of the soil. The various studies promotes bitumen modification. Incorporating 20-mesh crumb rubber and bio-oil into the bitumen reduces its viscosity and improves its fatigue value. When waste oil is mixed with asphalt, it revitalizes the bitumen, improves fatigue resistance, and increases compressive strength. The soil particles treated by Eko soil are held together by enzymes, which give them the same strength as cement. Apart from that, low-carbon binders such as basic oxygen furnace slag, bamboo fiber, enzyme-based soil treatment, zebu manure for stabilization, and lignin-contained biofuels and coproducts are discussed. Replacing these traditional binders helps with energy savings. All waste products are recycled, and energy is saved by not manufacturing traditional binders. Additionally, energy is saved, which is required to avoid the detrimental effects of these conventional binders, making them energy-efficient alternate binders. The authors also summarize the methods used, impacts, and changes that occur in soil properties after using substitutes in place of traditional binders. From the review, the authors determined that different binders have various properties in terms of chemical and physical compositions, and they show different variations in terms of strength when added to soil with low bearing capacity or poor stability.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"45 1","pages":"72 - 87"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment On Energy-Efficient Alternative for Different Types of Traditional Soil Binders\",\"authors\":\"Himanshu Jangde, Farhan Khan\",\"doi\":\"10.2478/sgem-2022-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Due to urban sprawl, the demand for land has increased for the purpose of construction. It is unlikely that soil available at different construction sites will be suitable for designed structures. For improving the load-bearing capacity of the soil, different soil binders are used, which are present in distinct states. In this review, the authors have collected details about various binders, which are generally used in the soil stabilization, and their effect as a binding agent on the soil. In this article, the authors tried to review different traditional binders. After studying various research articles, the authors found that lime, ground-granulated blast slag (GGBS) polypropylene, polyurethane grouting, and asphalt mix are frequently used binders. However, the authors also gathered information about the negative environmental impact of these traditional soil binders, which led to the need for alternatives to these commonly used soil binders. To diminish this issue, different alternate hydraulic and non-hydraulic binders are discussed. The authors found alternatives to cement and lime with the alkali-activated material consisting of Na2O and silica modulus and belite-calcium sulfoaluminate ferrite, which is also known as “Aether™.” According to the research, both alternatives emit 20–30% less CO2 into the environment and also improve the compressive strength of the soil. The various studies promotes bitumen modification. Incorporating 20-mesh crumb rubber and bio-oil into the bitumen reduces its viscosity and improves its fatigue value. When waste oil is mixed with asphalt, it revitalizes the bitumen, improves fatigue resistance, and increases compressive strength. The soil particles treated by Eko soil are held together by enzymes, which give them the same strength as cement. Apart from that, low-carbon binders such as basic oxygen furnace slag, bamboo fiber, enzyme-based soil treatment, zebu manure for stabilization, and lignin-contained biofuels and coproducts are discussed. Replacing these traditional binders helps with energy savings. All waste products are recycled, and energy is saved by not manufacturing traditional binders. Additionally, energy is saved, which is required to avoid the detrimental effects of these conventional binders, making them energy-efficient alternate binders. The authors also summarize the methods used, impacts, and changes that occur in soil properties after using substitutes in place of traditional binders. From the review, the authors determined that different binders have various properties in terms of chemical and physical compositions, and they show different variations in terms of strength when added to soil with low bearing capacity or poor stability.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"45 1\",\"pages\":\"72 - 87\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2022-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2022-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Comment On Energy-Efficient Alternative for Different Types of Traditional Soil Binders
Abstract Due to urban sprawl, the demand for land has increased for the purpose of construction. It is unlikely that soil available at different construction sites will be suitable for designed structures. For improving the load-bearing capacity of the soil, different soil binders are used, which are present in distinct states. In this review, the authors have collected details about various binders, which are generally used in the soil stabilization, and their effect as a binding agent on the soil. In this article, the authors tried to review different traditional binders. After studying various research articles, the authors found that lime, ground-granulated blast slag (GGBS) polypropylene, polyurethane grouting, and asphalt mix are frequently used binders. However, the authors also gathered information about the negative environmental impact of these traditional soil binders, which led to the need for alternatives to these commonly used soil binders. To diminish this issue, different alternate hydraulic and non-hydraulic binders are discussed. The authors found alternatives to cement and lime with the alkali-activated material consisting of Na2O and silica modulus and belite-calcium sulfoaluminate ferrite, which is also known as “Aether™.” According to the research, both alternatives emit 20–30% less CO2 into the environment and also improve the compressive strength of the soil. The various studies promotes bitumen modification. Incorporating 20-mesh crumb rubber and bio-oil into the bitumen reduces its viscosity and improves its fatigue value. When waste oil is mixed with asphalt, it revitalizes the bitumen, improves fatigue resistance, and increases compressive strength. The soil particles treated by Eko soil are held together by enzymes, which give them the same strength as cement. Apart from that, low-carbon binders such as basic oxygen furnace slag, bamboo fiber, enzyme-based soil treatment, zebu manure for stabilization, and lignin-contained biofuels and coproducts are discussed. Replacing these traditional binders helps with energy savings. All waste products are recycled, and energy is saved by not manufacturing traditional binders. Additionally, energy is saved, which is required to avoid the detrimental effects of these conventional binders, making them energy-efficient alternate binders. The authors also summarize the methods used, impacts, and changes that occur in soil properties after using substitutes in place of traditional binders. From the review, the authors determined that different binders have various properties in terms of chemical and physical compositions, and they show different variations in terms of strength when added to soil with low bearing capacity or poor stability.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories