International Journal of Intelligent Robotics and Applications最新文献

筛选
英文 中文
Neural admittance control based on motion intention estimation and force feedforward compensation for human–robot collaboration 基于运动意图估计和力前馈补偿的神经导纳控制,用于人机协作
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-07-22 DOI: 10.1007/s41315-024-00362-x
Wenxu Ai, Xinan Pan, Yong Jiang, Hongguang Wang
{"title":"Neural admittance control based on motion intention estimation and force feedforward compensation for human–robot collaboration","authors":"Wenxu Ai, Xinan Pan, Yong Jiang, Hongguang Wang","doi":"10.1007/s41315-024-00362-x","DOIUrl":"https://doi.org/10.1007/s41315-024-00362-x","url":null,"abstract":"<p>To enhance robotic manipulator adaptation to human partners and minimize human energy consumption in human–robot collaboration, this paper introduces a neural admittance control framework, which integrates human motion intention estimation and force feedforward compensation. Maximum likelihood estimation is employed to derive human motion intention and stiffness within human–robot collaboration, which are seamlessly merged into admittance control. Force feedforward compensation is proposed to minimize interaction force and position tracking fluctuations based on estimated human intention and stiffness. RBF neural network control is used to refine position inner loop dynamics and to improve position tracking accuracy and response speed. Comprehensive comparative simulations validate the method’s effectiveness in diminishing human–robot interaction force, enhancing position response speed, and mitigating interaction force and position fluctuations. The experiment performed on the Franka Emika Panda robot platform, illustrates that the proposed method is effective and enhance human-robot collaboration.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiobjective optimization-based trajectory planning for laser 3D scanner robots 基于多目标优化的激光 3D 扫描机器人轨迹规划
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-07-13 DOI: 10.1007/s41315-024-00357-8
Yumeng Huang, Guangyu Liu, Wujia Yu, Shanen Yu
{"title":"Multiobjective optimization-based trajectory planning for laser 3D scanner robots","authors":"Yumeng Huang, Guangyu Liu, Wujia Yu, Shanen Yu","doi":"10.1007/s41315-024-00357-8","DOIUrl":"https://doi.org/10.1007/s41315-024-00357-8","url":null,"abstract":"<p>In our industrial material defect detecting processes, the multi criteria is considered in two-level motion planning structure. Firstly, the feed speed of the end-effector should be programmed in optimal time for satisfying the requirement of high efficiency. Secondly, the planned joint velocities and accelaration are characterized by high-order derivatives to guarantee smooth motion, taking into account the kinematic constraints. Last but not least, energy consumption of the robot’s movement is a focus during designing trajectories. The Pareto optimal method is applied to solve the trajectory planning problem. The results of the experiments suggest that the Pareto approach can realize effective multi-objective optimization and deliver a group of Pareto solutions for decision makers. Based on the actual requirements, suitable Pareto-optimal trajectory can be achieved and the practical operation of the industrial robot is good.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a leech-inspired peristaltic crawling soft robot for intestine inspection 开发用于肠道检查的水蛭启发蠕动爬行软机器人
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-07-08 DOI: 10.1007/s41315-024-00358-7
Gongxin Li, Mindong Wang, Yazhou Zhu, Yadong Wang
{"title":"Development of a leech-inspired peristaltic crawling soft robot for intestine inspection","authors":"Gongxin Li, Mindong Wang, Yazhou Zhu, Yadong Wang","doi":"10.1007/s41315-024-00358-7","DOIUrl":"https://doi.org/10.1007/s41315-024-00358-7","url":null,"abstract":"<p>The development of a non-destructive and patient-friendly method for examining the intestines is crucial for early prevention and timely diagnosis of prevalent intestinal diseases that pose a threat to human health worldwide. Although the soft robot shows promise as an examination method due to its safe human-machine interaction and high maneuverability, achieving controlled and non-damaging movements within the flexible and delicate structure of the intestines remains a significant challenge. In this study, we propose and design a leech-inspired soft robot capable of operating in an intestine-like environment while ensuring lossless and controllable functionality. The soft robot consists of two dual-chambered adsorption actuators serving as “feet” and a retractable actuator as the body, enabling the robot to crawl by programmatically controlling the alternating movements of the adsorption actuators and the cooperation of the retractable actuator. Through numerical simulations, and movement tests in various scenarios such as planes, slopes, and intestine-like pipelines, we verified the adsorption characteristics and regulation mechanism of the adsorption actuator, as well as the movement performance of the robot. The results demonstrate that the adsorption actuator achieves a maximum adsorption force of 3.17 N, and the soft robot attains a maximum moving speed of 9.29 mm/s. This research offers a non-destructive and patient-friendly approach that holds promise for the detection and treatment of intestinal diseases in practical applications.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of vision-based reinforcement learning for drone navigation 基于视觉的无人机导航强化学习回顾
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-06-28 DOI: 10.1007/s41315-024-00356-9
Anas Aburaya, Hazlina Selamat, Mohd Taufiq Muslim
{"title":"Review of vision-based reinforcement learning for drone navigation","authors":"Anas Aburaya, Hazlina Selamat, Mohd Taufiq Muslim","doi":"10.1007/s41315-024-00356-9","DOIUrl":"https://doi.org/10.1007/s41315-024-00356-9","url":null,"abstract":"<p>In recent years, Unmanned aerial vehicles (UAVs) have witnessed a surge in popularity and implementation for both civilian and military usage. UAVs can be utilized for a wide range of applications, including mapping, surveillance, and inspection. For many of these applications, a high level of autonomy is required. Autonomy refers to the ability to complete missions or tasks without human intervention. Autonomous navigation is an essential element of autonomy, especially in GPS-denied environments where GNSS-based navigation is not reliable. Due to size and weight limitations, many UAVs employ vision-based localization and navigation techniques for GPS-denied environments. Reinforcement Learning (RL) is also increasingly being implemented for robotic applications, including obstacle avoidance, battery management, and navigation. Existing reviews typically focus on either vision-based autonomous navigation of drones or RL navigation for drones in general, but none specifically concentrate on the use of vision-based methods and RL for drone navigation. Moreover, previous reviews have highlighted the use of reinforcement learning based on tasks such as takeoff, landing, and navigation, whereas this review categorizes the use of RL based on the navigation problem and image input types for the RL models as these define the needed hardware and processing capabilities of the system. We define the current challenges and limitations for vision based RL navigation to provide direction for future works. Finally we provide an analysis of the favorable conditions for each category and the possibility of combining multiple categories to overcome the disadvantages of each.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear modeling and designing transition flight control scenarios for a dual thrust hybrid UAV 双推力混合无人机的非线性建模和过渡飞行控制方案设计
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-06-27 DOI: 10.1007/s41315-024-00354-x
Navid Mohammadi, Morteza Tayefi, Man Zhu
{"title":"Nonlinear modeling and designing transition flight control scenarios for a dual thrust hybrid UAV","authors":"Navid Mohammadi, Morteza Tayefi, Man Zhu","doi":"10.1007/s41315-024-00354-x","DOIUrl":"https://doi.org/10.1007/s41315-024-00354-x","url":null,"abstract":"<p>Researchers have recently focused on studying the flight dynamics and control of multicopters and fixed-wing aerial vehicles. However, investigating the transition phase between multicopter hover and fixed-wing cruise modes for a Dual-thrust Aerial Vehicle (DAV) is still challenging. In this paper, we develop two sets of nonlinear equations of motion for a DAV to create a multi-purpose dynamic model for designing control and transition mode scenarios. The first set considers the multicopter torque as the control input, while the second set considers the elevator torque as the control input. By analyzing three transition scenarios between multicopter hover and fixed-wing cruise flights, we observe that the best performance occurs for the third scenario in which the control system switches from multicopter control torque to elevator control torque when the multicopter thrust equals the wings’ lift. In this case, the vehicle will be protected from critical flight conditions like wing stalls while the transition will go smoothly with minimum height drop. The transition mode strategies are implemented using a model predictive controller in flight simulation. The numerical results show the dynamic behavior of the DAV in different transition scenarios from hover to cruise and vice versa, demonstrating successful altitude control and stable transitions in both phases.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A human–robot interaction control strategy for teleoperation robot system under multi-scenario applications 多场景应用下远程操作机器人系统的人机交互控制策略
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-06-27 DOI: 10.1007/s41315-024-00351-0
Zhengyu Wang, Mingxin Hai, Xuchang Liu, Zongkun Pei, Sen Qian, Daoming Wang
{"title":"A human–robot interaction control strategy for teleoperation robot system under multi-scenario applications","authors":"Zhengyu Wang, Mingxin Hai, Xuchang Liu, Zongkun Pei, Sen Qian, Daoming Wang","doi":"10.1007/s41315-024-00351-0","DOIUrl":"https://doi.org/10.1007/s41315-024-00351-0","url":null,"abstract":"<p>The teleoperation robot system (TRS) stands as a prominent research frontier within robot control, amalgamating human decision-making capacity with robot operation, thus markedly enhancing safety and precision compared to autonomous operation. This paper selects TRS hardware and designs master–slave interaction software comprising six distinct modules tailored to diverse functionalities. It further derives forward and backward kinematic equations based on master–slave device linkage parameters, proposing a Cartesian workspace-based master–slave mapping algorithm. Additionally, a human–robot interaction (HRI) control framework emphasizing direct force feedback is devised to bolster system HRI performance and operator immersion. To ensure smooth, safe, and agile slave device movement, an innovative impedance controller-based TRS force feedback HRI control framework is introduced. The effectiveness of the TRS HRI control framework is validated via comprehensive experiments conducted across multiple scenarios, including remote robot axle-hole assembly, blackboard erasing, text writing, and auxiliary welding operations, on a constructed experimental platform for robot remote operation system HRIs.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of extended kalman filter for localization of ambulance robot 实现用于救护车机器人定位的扩展卡尔曼滤波器
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-06-25 DOI: 10.1007/s41315-024-00352-z
Chan-Yun Yang, Hooman Samani, Zirong Tang, Chunxu Li
{"title":"Implementation of extended kalman filter for localization of ambulance robot","authors":"Chan-Yun Yang, Hooman Samani, Zirong Tang, Chunxu Li","doi":"10.1007/s41315-024-00352-z","DOIUrl":"https://doi.org/10.1007/s41315-024-00352-z","url":null,"abstract":"<p>This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Example-driven trajectory learner for robots under structured static environment 结构化静态环境下机器人的示例驱动轨迹学习器
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-06-21 DOI: 10.1007/s41315-024-00353-y
Midhun Muraleedharan Sylaja, Suraj Kamal, James Kurian
{"title":"Example-driven trajectory learner for robots under structured static environment","authors":"Midhun Muraleedharan Sylaja, Suraj Kamal, James Kurian","doi":"10.1007/s41315-024-00353-y","DOIUrl":"https://doi.org/10.1007/s41315-024-00353-y","url":null,"abstract":"<p>With the breakthroughs in machine learning and computing infrastructures that have led to significant performance improvements in cognitive robotics, the challenge of continuous-trajectory task creation persists. This challenge stems from the need to account for inter-joint relationships, which define constraints between different robot joints due to the kinematic structure, and intra-joint relationships, which are constraints within a single joint like limits. Accounting for these coupled, nonlinear inter-joint and intra-joint relationships is crucial for trajectory planning. However, various constraints in the physical capability of robots, environmental changes, and long-time reliance on sequential dependencies between these inter-joint and intra-joint relationships make the work of modifying robot trajectories exceptionally hard. Many robot environments function under structured static work-cell completing extended series of subtasks. The conventional descriptors for robot trajectory rely on symbolic rules with human intelligence, which involves skilled individuals and possesses significant limitations, such as being time-consuming and exhibiting low flexibility even for minor changes, due to the static nature of task descriptions alone. The suggested technique employs a probabilistic network and data-efficient modelling termed generative adversarial networks, which learns the underlying constraints, probability distributions and arbitrations, along with generating trajectory instances at each time of sampling. Integrating prior knowledge into the symbolic trajectory learner as a dataset facilitates the learning process. The model assessment was carried out by utilising a custom-built dataset in a simulation based environment. This research also proposed two GAN inversion methods to compute the generated trajectory and its closest instance in the dataset. Furthermore, GAN Inversion method I and II calculated the robot path accuracy in extrinsic generative models yielded path position accuracy of 9.2 cm and 4.9 cm respectively. In addition to that, the study contributes a probabilistic model for interpolating between various trajectories to generate new trajectories.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design optimisation and an experimental assessment of soft actuator for robotic grasping 用于机器人抓取的软致动器的优化设计和实验评估
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-06-20 DOI: 10.1007/s41315-024-00355-w
Dhruba Jyoti Sut, Prabhu Sethuramalingam
{"title":"Design optimisation and an experimental assessment of soft actuator for robotic grasping","authors":"Dhruba Jyoti Sut, Prabhu Sethuramalingam","doi":"10.1007/s41315-024-00355-w","DOIUrl":"https://doi.org/10.1007/s41315-024-00355-w","url":null,"abstract":"<p>Many robotic systems face substantial challenges when trying to grasp and manipulate objects. Thought of initially as humanoid automata a century ago, this viewpoint is still influential in modern robot design. Many robotic grippers are inspired by the deftness of the human hand. The perceptual, processing, and control issues that conventional grippers have are also experienced by soft-fingered grippers. Precise finger placement, dictated by the shape and attitude of the object, is necessary to accomplish force closure when using soft fingertips to grasp. Soft robotic end-effectors have several advantages, such as a good interface with humans, the capacity to adapt to different environments, a number of degrees of freedom, and the ability to non-destructively grasp items of various shapes. Adding to earlier research that looked at the soft robot in a theoretical way, this study creates an optimized model based on the deformation in terms of bending of the channel cavity under applied pneumatic pressure. A correlation between pneumatic pressure and the pneumatic soft actuator's bending angle has been demonstrated. This research looks at how different design factors affect the bending of a multi-chambered soft actuator that is pneumatically networked. The finite element approach involves fine-tuned (optimised) actuator construction. Using FEM to evaluate aspects affecting actuator mechanical output, the ideal design parameters were discovered using DoE, resulting in a bending angle of ~ 104 degrees at 30 kPa. This study used ANOVA at a 5% significant level to identify which variables most affected the pneumatic actuator's deformation (bending angle). The significant R-square value of 96.42% supports the study's conclusions that the parameters utilised explain an immense percentage of bending angle deviations. Experimental verification of the optimized finite element model findings was conducted. The verification of the actuators' bending angles and output forces reveals that the discrepancy between the two sets of data stayed below 9%. Also, the average gripping success rate attained in the grasping evaluation, which involved four distinct types of items, was almost 97%.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting the robot's grip capacity on different objects using multi-object grasping 利用多物体抓取技术预测机器人对不同物体的抓取能力
IF 1.7
International Journal of Intelligent Robotics and Applications Pub Date : 2024-06-19 DOI: 10.1007/s41315-024-00342-1
Joseph Teguh Santoso, Mars Caroline Wibowo, Budi Raharjo
{"title":"Predicting the robot's grip capacity on different objects using multi-object grasping","authors":"Joseph Teguh Santoso, Mars Caroline Wibowo, Budi Raharjo","doi":"10.1007/s41315-024-00342-1","DOIUrl":"https://doi.org/10.1007/s41315-024-00342-1","url":null,"abstract":"<p>This study explores the novel concept of Multi-Object Grasping (MOG) and develops an architecture based on autoencoders and transformers for accurate object prediction in MOG scenarios. The approach employs different deep learning methods and diverse training approaches using the ping pong ball dataset. The parameters obtained from this training enhance the model's performance on the actual system dataset, serving as the final test and validation of the model's reliability in real-world situations. Comparing the model's performance on both datasets facilitates validation and refinement, affirming its effectiveness in practical robotic applications. The study highlights that training various dataset features significantly improves prediction accuracy compared to the Naïve model using dense neural networks. Using five-time steps notably enhances prediction accuracy, especially with the GRU model in time-series data architecture, achieving a peak accuracy of 96%. While MOG has been extensively studied, this study introduces a novel architecture distinct from traditional visual methods. A framework is established that utilizes autoencoder and transformer technologies for managing tactile sensors, hand pose joint angles and force measurements. This approach demonstrates the potential for accurately predicting multiple objects in MOG scenarios.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信