实现用于救护车机器人定位的扩展卡尔曼滤波器

IF 2.1 Q3 ROBOTICS
Chan-Yun Yang, Hooman Samani, Zirong Tang, Chunxu Li
{"title":"实现用于救护车机器人定位的扩展卡尔曼滤波器","authors":"Chan-Yun Yang, Hooman Samani, Zirong Tang, Chunxu Li","doi":"10.1007/s41315-024-00352-z","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of extended kalman filter for localization of ambulance robot\",\"authors\":\"Chan-Yun Yang, Hooman Samani, Zirong Tang, Chunxu Li\",\"doi\":\"10.1007/s41315-024-00352-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.</p>\",\"PeriodicalId\":44563,\"journal\":{\"name\":\"International Journal of Intelligent Robotics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Robotics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41315-024-00352-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00352-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍了扩展卡尔曼滤波器在名为 Ambubot 的半自主救护机器人系统室内定位中的应用。该系统旨在缩短非专业救援人员在心脏骤停事件中定位自动体外除颤器(AED)的响应时间。为实现这一目标,机器人配备了自动体外除颤器,并利用扩展卡尔曼滤波器进行最佳室内定位。该滤波器是利用机器人惯性测量单元的数据实现的,惯性测量单元由 9 个自由度组成。论文明确描述了扩展卡尔曼滤波器在估计 Ambubot 位置时的性能,并证明了所提出的方法能够有效地在未知的室内环境中准确确定和估计机器人的位置。结果表明,所提出的方法是提高心脏骤停病例存活率的一个很有前途的解决方案,并有可能应用于需要精确室内定位的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Implementation of extended kalman filter for localization of ambulance robot

Implementation of extended kalman filter for localization of ambulance robot

This paper focuses on the implementation of the Extended Kalman Filter for indoor localization of a semi-autonomous Ambulance Robot system named Ambubot. The system is designed to reduce the response time for lay rescuers to locate an Automated External Defibrillator (AED) during sudden cardiac arrest events. To achieve this objective, the robot is equipped with an AED, and the Extended Kalman Filter is utilized for optimal indoor localization. The filter is implemented using data from the robot’s Inertial Measurement Unit, which comprises 9 Degrees of Freedom. The paper provides an explicit description of the performance of the Extended Kalman Filter in estimating the position of Ambubot, and demonstrates that the proposed approach is effective in accurately determining and estimating the robot’s position in unknown indoor environments. The results suggest that the proposed method is a promising solution for improving survival rates in cardiac arrest cases, and may have potential applications in other fields where accurate indoor localization is required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.90%
发文量
50
期刊介绍: The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信