Commentationes Mathematicae Universitatis Carolinae最新文献

筛选
英文 中文
Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results 构造和嵌入相互正交的拉丁正方形:回顾新的和现有的结果
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2021-03-09 DOI: 10.14712/1213-7243.2021.003
D. Donovan, M. Grannell, E. Yazici
{"title":"Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results","authors":"D. Donovan, M. Grannell, E. Yazici","doi":"10.14712/1213-7243.2021.003","DOIUrl":"https://doi.org/10.14712/1213-7243.2021.003","url":null,"abstract":"We review results for the embedding of orthogonal partial Latin squares in orthogonal Latin squares, comparing and contrasting these with results for embedding partial Latin squares in Latin squares. We also present a new construction that uses the existence of a set of $t$ mutually orthogonal Latin squares of order $n$ to construct a set of $2t$ mutually orthogonal Latin squares of order $n^t$.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46258031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The operation $ABA$ in operator algebras 算子代数中的运算$ABA$
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2021-03-09 DOI: 10.14712/1213-7243.2020.041
Gaál Marcell
{"title":"The operation $ABA$ in operator algebras","authors":"Gaál Marcell","doi":"10.14712/1213-7243.2020.041","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.041","url":null,"abstract":". The binary operation aba , called Jordan triple product, and its variants (such as e.g. the sequential product √ ab √ a or the inverted Jordan triple product ab − 1 a ) appear in several branches of operator theory and matrix analysis. In this paper we briefly survey some analytic and algebraic properties of these operations, and investigate their intimate connection to Thompson type isometries in different operator algebras.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44197458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semisymmetrization and Mendelsohn quasigroups 半对称与Mendelsohn拟群
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2021-03-09 DOI: 10.14712/1213-7243.2021.001
 Smith Jonathan D. H.
{"title":"Semisymmetrization and Mendelsohn quasigroups","authors":" Smith Jonathan D. H.","doi":"10.14712/1213-7243.2021.001","DOIUrl":"https://doi.org/10.14712/1213-7243.2021.001","url":null,"abstract":". The semisymmetrization of an arbitrary quasigroup builds a semisym-metric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisym-metrization on the square of the underlying set was recently introduced by A. Krapeˇz and Z. Petri´c. Their construction in fact yields a Mendelsohn quasi-group, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups isotopic to an abelian group, the relation between the semisymmetrization and the Mendel-sohnization is studied. It is shown that the semisymmetrization is the total space for an action of the Mendelsohnization on the abelian group. The Mendel-sohnization of an abelian group isotope is then identified as the idempotent replica of its semisymmetrization, with fibers isomorphic to the abelian group.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44236998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$ 阶$p^5阶初等阿贝尔内映射群的有限交换ip环
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2021-03-09 DOI: 10.14712/1213-7243.2020.034
M. Niemenmaa
{"title":"On finite commutative IP-loops with elementary abelian inner mapping groups of order $p^5$","authors":"M. Niemenmaa","doi":"10.14712/1213-7243.2020.034","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.034","url":null,"abstract":"We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order $p^4$ are centrally nilpotent of class at most two.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42388536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Asymptotic properties of a $varphi$-Laplacian and Rayleigh quotient $varphi$-Laplacian和Rayleigh商的渐近性质
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2020-12-21 DOI: 10.14712/1213-7243.2020.020
 Arriagada Waldo, Huentutripay Jorge
{"title":"Asymptotic properties of a $varphi$-Laplacian and Rayleigh quotient","authors":" Arriagada Waldo, Huentutripay Jorge","doi":"10.14712/1213-7243.2020.020","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.020","url":null,"abstract":"","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49188692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further properties of Stepanov--Orlicz almost periodic functions Stepanov—Orlicz概周期函数的进一步性质
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2020-12-21 DOI: 10.14712/1213-7243.2020.030
Djabri Yousra, Bedouhene Fazia, Boulahia Fatiha
{"title":"Further properties of Stepanov--Orlicz almost periodic functions","authors":"Djabri Yousra, Bedouhene Fazia, Boulahia Fatiha","doi":"10.14712/1213-7243.2020.030","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.030","url":null,"abstract":"","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44178737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can a Lucas number be a sum of three repdigits? Lucas数可以是三个重复数字的和吗?
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2020-12-21 DOI: 10.14712/1213-7243.2020.028
 Adegbindin Chèfiath A., Togbé Alain
{"title":"Can a Lucas number be a sum of three repdigits?","authors":" Adegbindin Chèfiath A., Togbé Alain","doi":"10.14712/1213-7243.2020.028","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.028","url":null,"abstract":"","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45771897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On left $varphi$-biflat Banach algebras 左$varphi$-双平面巴拿赫代数
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2020-12-21 DOI: 10.14712/1213-7243.2020.027
S. Amir, Rostami Mehdi, Pourabbas Abdolrasoul
{"title":"On left $varphi$-biflat Banach algebras","authors":"S. Amir, Rostami Mehdi, Pourabbas Abdolrasoul","doi":"10.14712/1213-7243.2020.027","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.027","url":null,"abstract":"","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43127481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fixed point approximation under Mann iteration beyond Ishikawa Ishikawa以外Mann迭代下的不动点近似
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2020-12-21 DOI: 10.14712/1213-7243.2020.031
 Hester Anthony, Morales Claudio H.
{"title":"Fixed point approximation under Mann iteration beyond Ishikawa","authors":" Hester Anthony, Morales Claudio H.","doi":"10.14712/1213-7243.2020.031","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.031","url":null,"abstract":". Consider the Mann iteration x n +1 = (1 − α n ) x n + α n Tx n for a nonex-pansive mapping T : K → K defined on some subset K of the normed space X . We present an innovative proof of the Ishikawa almost fixed point principle for nonexpansive mapping that reveals deeper aspects of the behavior of the process. This fact allows us, among other results, to derive convergence of the process under the assumption of existence of an accumulation point of { x n } .","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49330604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geodesic graphs in Randers g.o. spaces Randers g.o.空间中的测地线图
IF 0.2
Commentationes Mathematicae Universitatis Carolinae Pub Date : 2020-11-05 DOI: 10.14712/1213-7243.2020.023
Dušek Zdeněk
{"title":"Geodesic graphs in Randers g.o. spaces","authors":"Dušek Zdeněk","doi":"10.14712/1213-7243.2020.023","DOIUrl":"https://doi.org/10.14712/1213-7243.2020.023","url":null,"abstract":". The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48901121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信