Fixed point approximation under Mann iteration beyond Ishikawa

IF 0.2 Q4 MATHEMATICS
 Hester Anthony, Morales Claudio H.
{"title":"Fixed point approximation under Mann iteration beyond Ishikawa","authors":" Hester Anthony, Morales Claudio H.","doi":"10.14712/1213-7243.2020.031","DOIUrl":null,"url":null,"abstract":". Consider the Mann iteration x n +1 = (1 − α n ) x n + α n Tx n for a nonex-pansive mapping T : K → K defined on some subset K of the normed space X . We present an innovative proof of the Ishikawa almost fixed point principle for nonexpansive mapping that reveals deeper aspects of the behavior of the process. This fact allows us, among other results, to derive convergence of the process under the assumption of existence of an accumulation point of { x n } .","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2020.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. Consider the Mann iteration x n +1 = (1 − α n ) x n + α n Tx n for a nonex-pansive mapping T : K → K defined on some subset K of the normed space X . We present an innovative proof of the Ishikawa almost fixed point principle for nonexpansive mapping that reveals deeper aspects of the behavior of the process. This fact allows us, among other results, to derive convergence of the process under the assumption of existence of an accumulation point of { x n } .
Ishikawa以外Mann迭代下的不动点近似
考虑非扩张映射T:K的Mann迭代xn+1=(1−αn)xn+αn Txn→ K定义在赋范空间X的某个子集K上。我们提出了非扩张映射的Ishikawa几乎不动点原理的创新证明,揭示了过程行为的更深层次。除其他结果外,这一事实使我们能够在{xn}的累积点存在的假设下导出过程的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信