{"title":"Randers g.o.空间中的测地线图","authors":"Dušek Zdeněk","doi":"10.14712/1213-7243.2020.023","DOIUrl":null,"url":null,"abstract":". The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.","PeriodicalId":44396,"journal":{"name":"Commentationes Mathematicae Universitatis Carolinae","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Geodesic graphs in Randers g.o. spaces\",\"authors\":\"Dušek Zdeněk\",\"doi\":\"10.14712/1213-7243.2020.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.\",\"PeriodicalId\":44396,\"journal\":{\"name\":\"Commentationes Mathematicae Universitatis Carolinae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentationes Mathematicae Universitatis Carolinae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14712/1213-7243.2020.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentationes Mathematicae Universitatis Carolinae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2020.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
. The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.