{"title":"Multistable and Time Sequencing Photorefractive Ring Resonators","authors":"Dana Z. Anderson, C. Benkert, A. Hermanns","doi":"10.1364/nldos.1990.dmmpcps478","DOIUrl":"https://doi.org/10.1364/nldos.1990.dmmpcps478","url":null,"abstract":"In this presentation we discuss and demonstrate the performance of two novel multimode photorefractive systems. The first is a multimode resonator with “winner-takes-all” dynamics. The resonator has several (in our case five) stable steady state solutions in which one mode always oscillates while all the others are suppressed. The system makes a decision which of the modes it will support depending on the initial conditions. The state of the system can then be switched with an external light signal. A modification of the resonator results in a different all-optical system which is capable of recalling a stored sequence of oscillating modes. The dynamics of this sequential recall process is again completely controlled by photorefractive two beam coupling.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129169296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synchronization of Chaotic Orbits in Semiconductor Laser Arrays","authors":"L. Rahman, H. Winful","doi":"10.1364/nldos.1990.sdslad110","DOIUrl":"https://doi.org/10.1364/nldos.1990.sdslad110","url":null,"abstract":"A subset of lasers in an array of coupled lasers can produce identical, synchronized, chaotic signals. When synchronization fails, spatio-temporal chaos results.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"144 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123289168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. James, E. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy
{"title":"Chaos in Intracavity Second Harmonic Generation","authors":"G. James, E. Harrell, C. Bracikowski, K. Wiesenfeld, R. Roy","doi":"10.1364/nldos.1990.ob260","DOIUrl":"https://doi.org/10.1364/nldos.1990.ob260","url":null,"abstract":"Diode laser pumped Nd: YAG (yttrium aluminum garnet) lasers can generate a substantial amount of green output with an intracavity nonlinear crystal such as potassium titanyl phosphate (KTP) (Fig. 1). Large irregular fluctuations of the output have very often been observed,1 which make it difficult to utilize these lasers in applications requiring stability. Oka and Kubota have shown that a quarter wave plate can be used to stabilize the output of a laser with two orthogonally polarized modes.2 We have previously analyzed the nonlinear dynamical behavior of the laser model used by Baer.1 A thorough stability analysis of this model was carried out by Mandel and WuA.4,5","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122960214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From harmonic to pulsating periodic solutions in intracavity second harmonic generation","authors":"Nicolas Pettiaux, T. Erneux","doi":"10.1364/nldos.1992.mc25","DOIUrl":"https://doi.org/10.1364/nldos.1992.mc25","url":null,"abstract":"We consider the problem of Second Harmonic Generation (SHG) inside a resonant cavity, pumped by an external laser. The elementary process that takes place in SHG is the absorption of 2 photons of frequency ω and the emission of one photon at frequency 2ω. Drummond et al[1] have shown that this problem can be modeled by two ordinary differential equations for the (complex) amplitudes of the electrical fields: where overbar means complex conjugate.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126584276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Static and Dynamic Optical Bistability in Fabry-Pérot and Distributed Feedback Resonators with Quantum Well structures","authors":"F. Castelli, L. Lugiato, G. Bava, P. Debernardi","doi":"10.1364/nldos.1992.tuc15","DOIUrl":"https://doi.org/10.1364/nldos.1992.tuc15","url":null,"abstract":"Recently relevant results on optical bistability in Multiple Quantum Well (MQW) structures at room temperature have been reported [1].\u0000 In this paper a rather complete model for optical bistability in Fabry-Pérot (FP) and Distributed Feedback devices (DFB) including a MQW structure is described. It includes the optical dielectric response of the MQW structure, the static output power vs. input power and finally the dynamical behaviour.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"162 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116638598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulse statistics of modulated gas lasers","authors":"A. Valle, L. Pesquera, M. A. Rodríguez","doi":"10.1364/nldos.1992.tuc28","DOIUrl":"https://doi.org/10.1364/nldos.1992.tuc28","url":null,"abstract":"Pulse statistics of modulated class A single mode lasers is analyzed both numerically and analytically. The time evolution of the electric field is described by the following equation where a is the pump parameter and ψ is the spontaneous emission noise of intensity D. An analytic approximation is developed for the switch-on time probability density. In this approximation the time evolution is divided in two regimes: a linear one with noise, where saturation is not important, and a nonlinear deterministic domain. Using a kind of self-consistency condition for the switch–on time probability density P(t), an integral equation is derived for P(t). Numerical simulations show that this approximation is very accurate (see Fig.1).","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125216828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Different Chaotic Regimes in LSA","authors":"A. Fioretti, F. Papoff, B. Zambon, E. Arimondo","doi":"10.1364/nldos.1990.oc554","DOIUrl":"https://doi.org/10.1364/nldos.1990.oc554","url":null,"abstract":"The chaotic regimes of a CO2 laser with intracavity absorber have been recorded and investigated by means of return time maps and symbolic dynamics. Evidence of two different kinds of chaotic signals has been found","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114000297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Neural-Network Algorithms to Nonlinear Time Series Analysis of Dynamical Optical Systems","authors":"C. Bowden, C. E. Hall, S. Pethel, C. Sung","doi":"10.1364/nldos.1990.ld278","DOIUrl":"https://doi.org/10.1364/nldos.1990.ld278","url":null,"abstract":"The techniques of prediction and modeling using a neural network algorithm, preceded by application of noise reduction methods, are shown to be applicable to time series associated with nonlinear dynamical optical systems. The time series generated from a generic dynamical model is used to train a backpropagation, feed forward neural network which is subsequently used to demonstrate strong predictive characteristics. It is demonstrated that such a simple neural network, consisting of fifty neurons, trained using a time series generated from the logistic map in the chaotic regime, produces a self-generated time series which has a maximum positive Lyapunov exponent, χ, which is within six percent of the value obtained from the map, using the same method for determination of χ from the time series. It is also shown that system and measurement noise can be reduced, in the white noise driven logistics map, to within ten percent using an extended Kalman filter algorithm.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"352 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122847976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The modulated semiconductor laser: a Hamiltonian search for its periodic attractors","authors":"P. D. De Jagher, D. Lenstra","doi":"10.1364/nldos.1992.tha5","DOIUrl":"https://doi.org/10.1364/nldos.1992.tha5","url":null,"abstract":"Modulated lasers have been investigated for over a decade now, c.f. ref. [3] and references cited therein. Periodic as well as chaotic types of operation have been observed. In this paper we put forward a mathematical technique to calculate lower and upper bounds for the modulation strength which is needed to sustain a periodic large amplitude output.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"258 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132805036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of initial phase factor on the properties of an electro-optical bistable system","authors":"Zheng Zhiren, Gao Jinyue","doi":"10.1364/nldos.1992.tuc18","DOIUrl":"https://doi.org/10.1364/nldos.1992.tuc18","url":null,"abstract":"The hybrid bistable system with a delay in the feedback loop, which was originally proposed and studied by Ikeda[1], has been widely investigated[2,3,4] as this system plays many common instability behaviours of nonlinear dynamical systems. There is an initial phase factor in the equation describing the system dynamics as there are for most other bistable systems, which is equivalent to the bias in the device. We report the important role played by this phase factor in the bistability and instability behaviours, especially when the input intensity of the system is modulated harmonically.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133901365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}