{"title":"调制半导体激光器:对其周期性吸引子的哈密顿搜索","authors":"P. D. De Jagher, D. Lenstra","doi":"10.1364/nldos.1992.tha5","DOIUrl":null,"url":null,"abstract":"Modulated lasers have been investigated for over a decade now, c.f. ref. [3] and references cited therein. Periodic as well as chaotic types of operation have been observed. In this paper we put forward a mathematical technique to calculate lower and upper bounds for the modulation strength which is needed to sustain a periodic large amplitude output.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The modulated semiconductor laser: a Hamiltonian search for its periodic attractors\",\"authors\":\"P. D. De Jagher, D. Lenstra\",\"doi\":\"10.1364/nldos.1992.tha5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modulated lasers have been investigated for over a decade now, c.f. ref. [3] and references cited therein. Periodic as well as chaotic types of operation have been observed. In this paper we put forward a mathematical technique to calculate lower and upper bounds for the modulation strength which is needed to sustain a periodic large amplitude output.\",\"PeriodicalId\":441335,\"journal\":{\"name\":\"Nonlinear Dynamics in Optical Systems\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Dynamics in Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/nldos.1992.tha5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics in Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/nldos.1992.tha5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The modulated semiconductor laser: a Hamiltonian search for its periodic attractors
Modulated lasers have been investigated for over a decade now, c.f. ref. [3] and references cited therein. Periodic as well as chaotic types of operation have been observed. In this paper we put forward a mathematical technique to calculate lower and upper bounds for the modulation strength which is needed to sustain a periodic large amplitude output.