Journal of Physics-Photonics最新文献

筛选
英文 中文
Numerical simulation of ply angle deviation and thermal deformation behavior of CFRP reflector CFRP反射面铺层角偏差及热变形特性的数值模拟
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2633/1/012012
Wenjian Jiang, Hengkun Jiang, Tonglong Huo, Yun Liang
{"title":"Numerical simulation of ply angle deviation and thermal deformation behavior of CFRP reflector","authors":"Wenjian Jiang, Hengkun Jiang, Tonglong Huo, Yun Liang","doi":"10.1088/1742-6596/2633/1/012012","DOIUrl":"https://doi.org/10.1088/1742-6596/2633/1/012012","url":null,"abstract":"Abstract As we know, the ply angle deviation of Carbon Fiber Reinforced Polymer(CFRP) reflector is difficult to obtain accurately in engineering applications, it will make thermal deformation of reflector unpredictable due to the discreteness of ply angle. In this paper, based on constitutive relationships between generalized internal force and strain of laminated composite, a novel ply angle deviation model based on normal distribution is proposed. Furthermore, an orthogonal test was designed and significance analysis were carried out by means of a 2.6m aperture reflector with polygonal back structure. Assumed that the ply angle deviation obeys normal distribution, a number of samples were further randomly generated, and the sample mean and standard deviation of the thermal deformation of reflector were calculated. According to χ2-test of goodness of fit, the thermal deformation of reflector still follows normal distribution. Finally, an example was employed to verify the validity and effectiveness of the proposed method. The results reach a good agreement with the experimental data, thus it is capable of providing a promising prospect for engineering practice.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"32 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic and Relaxation of PEG polymer Chain Segment for Phase Change Materials (PCMs) 相变材料(PCMs)中聚乙二醇聚合物链段的动态与弛豫
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2623/1/012020
N A Fauziyah, None Sakinah, W Rachma, S Paratapa, D S Perwitasaric, P C Wardhani, E N Hidayah
{"title":"Dynamic and Relaxation of PEG polymer Chain Segment for Phase Change Materials (PCMs)","authors":"N A Fauziyah, None Sakinah, W Rachma, S Paratapa, D S Perwitasaric, P C Wardhani, E N Hidayah","doi":"10.1088/1742-6596/2623/1/012020","DOIUrl":"https://doi.org/10.1088/1742-6596/2623/1/012020","url":null,"abstract":"Abstract This work’s most notable memory concept for next-generation novels was a reversible phase shift in a substance called phase change materials (PCMs). Here, a polyethylene glycol (PEG) polymer relaxation study employing DMA will be conducted to investigate the qualities of PCMs as superior materials. Through the method of wet mixing, PEG polymer with reinforcement made of silica was synthesized. The variation of silica xerogel was a composition of up to 20% silica xerogel. Adding silica is quite good in reducing the loss factor up to 50 MPa at the addition of 20% silica xerogel. This condition was due to the bonds formed in the polymer chain causing shrinkage and flexibility of composites. Due to the addition of silica xerogel as filler, we can study the relaxation behavior and loss factor of a material using DMA and learn more about its viscoelastic characteristics, including its capacity to absorb vibrations, resistance to impacts, and overall mechanical performance at various temperatures. Relaxation was frequently used to describe phase change materials (PCMs), especially when discussing their capacity to store thermal energy. The release or absorption of thermal energy by a PCM during its phase transition was referred to as the relaxation process.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"32 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-timescale Scheduling Strategy for Residential Integrated Energy System 住宅综合能源系统的多时间尺度调度策略
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2636/1/012010
Yang Gao, Siyue Lu, Longfei Ma, Jiani Zeng, Yutong Zhao, Baoqun Zhang, Hui Xu, Xiangyan Yang, Shaobin Yang
{"title":"A Multi-timescale Scheduling Strategy for Residential Integrated Energy System","authors":"Yang Gao, Siyue Lu, Longfei Ma, Jiani Zeng, Yutong Zhao, Baoqun Zhang, Hui Xu, Xiangyan Yang, Shaobin Yang","doi":"10.1088/1742-6596/2636/1/012010","DOIUrl":"https://doi.org/10.1088/1742-6596/2636/1/012010","url":null,"abstract":"Abstract In recent years, multi-energy complementation has been deepening, and the application rate of new energy sources has been increasing. A multi-timescale optimal scheduling strategy is proposed to mobilize the energy flexibility of residential integrated energy systems (RIES) and to reduce the negative impact of source-load forecast uncertainty on the scheduling plan. Firstly, for the energy supply structure of RIES, the operation constraint model of each energy hub equipment is established. Then, the optimal scheduling is divided into three stages: day-ahead planning, intra-day planning, and real-time planning, each of which will consider the volatility of source-load prediction and determine the operation status of the equipment according to its importance level. The experimental results show that the proposed multi-timescale scheduling strategy can ensure the economy while minimizing the deviation of the main grid power purchase in the real-time and day-ahead phases, providing a basis for the development of new energy capacity in the grid to grow to higher penetration rates.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135765003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Convolutional Neural Network for Particle Image Velocimetry 一种改进的卷积神经网络用于粒子图像测速
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2645/1/012013
Shuicheng Gong, Fuhao Zhang, Gang Xun, Xuesong Li
{"title":"An Improved Convolutional Neural Network for Particle Image Velocimetry","authors":"Shuicheng Gong, Fuhao Zhang, Gang Xun, Xuesong Li","doi":"10.1088/1742-6596/2645/1/012013","DOIUrl":"https://doi.org/10.1088/1742-6596/2645/1/012013","url":null,"abstract":"Abstract With the wide application of Particle Image Velocimetry (PIV) technology in various engineering and research fields, the requirements for the accuracy, computational efficiency, and robustness of PIV algorithms are increasing. Although traditional algorithms have wide applicability, they suffer from low accuracy, large computational cost, and poor robustness. Recently, deep learning algorithms have provided new solutions, especially, convolutional neural networks with different structures, which have achieved good performance on synthetic PIV datasets. This paper proposes a structural improvement scheme for PIV convolutional neural network models. Experiments verify that the proposed method can significantly optimize the performance of the model on synthetic PIV datasets, providing a novel approach for improving other convolutional neural networks for PIV analysis.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135715701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibration Reduction of Robot End Effector Based on Co-simulation Method 基于联合仿真方法的机器人末端执行器减振
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2632/1/012036
Daixing Lu, Yang Zhang, Junjie Lu
{"title":"Vibration Reduction of Robot End Effector Based on Co-simulation Method","authors":"Daixing Lu, Yang Zhang, Junjie Lu","doi":"10.1088/1742-6596/2632/1/012036","DOIUrl":"https://doi.org/10.1088/1742-6596/2632/1/012036","url":null,"abstract":"Abstract Hydraulic cylinder replacement robot as a new type of engineering machinery has been increasingly used, but its end effector encounters vibrations in the process of clamping the object, so the accuracy of disassembling and assembling the cylinder will be reduced, thus reducing the replacement efficiency and affecting the user’s experience. To address this problem, virtual prototyping technology is used to study the cylinder disassembly process under real working conditions. We use the 3D modeling software Solidworks to construct a model of the cylinder replacement robot. After that, kinematic analysis of the model is carried out, then a dynamics model is built in multi-body dynamics simulation software ADAMS to simulate the process of the robot grasping the object, as a consequence, the trajectory of the end effector is calculated. A controlled dynamic model is established with Simulink and Adams by using the co-simulation technique, and optimization is carried out by using the model. Results show that the optimized control parameter can effectively reduce the end effector vibration and improve the stability and accuracy of the work.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"83 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135716626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insulator Defect Detection Method upon Fused Attention Mechanism and Bidirectional Feature Fusion 基于融合注意机制和双向特征融合的绝缘子缺陷检测方法
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2632/1/012013
Yiming Chen
{"title":"Insulator Defect Detection Method upon Fused Attention Mechanism and Bidirectional Feature Fusion","authors":"Yiming Chen","doi":"10.1088/1742-6596/2632/1/012013","DOIUrl":"https://doi.org/10.1088/1742-6596/2632/1/012013","url":null,"abstract":"Abstract Insulators are important components for achieving electrical insulation and mechanical support, but they are prone to various defects in harsh operating environments, which can damage their mechanical strength and insulation performance. This article proposes the Shuffle YOLOv7 model based on the YOLOv7 algorithm for insulator defect detection, aiming to solve the weakness of low precision in traditional object detection algorithms when facing complex backgrounds and small-sized defects. To address the issue of low attention to flashover faults in traditional algorithms, the ShuffleAttention fusion attention mechanism is supplied to concentrate on both intra-channel and inter-channel deep features, and the original PANet structure is replaced with a pyramid which has a bidirectional feature fusion structure to enhance the network’s feature extraction ability. The Focal-EIOU LOSS optimization method focuses on high-quality prior boxes to improve model accuracy, and the effectiveness of the optimization method is verified through ablation experiments. These results of the experiment show that the proposed algorithm achieves varying degrees of performance improvement in terms of precision, recall, average precision, and overall loss compared to mainstream object detection algorithms in detecting insulator damage and flashover.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"95 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135716771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An airborne object detection and location system based on deep inference 一种基于深度推理的机载目标检测定位系统
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2632/1/012019
Xiao Hu, Shenfu Pan, Dongdong Li, Long Feng, Yuan Zhao
{"title":"An airborne object detection and location system based on deep inference","authors":"Xiao Hu, Shenfu Pan, Dongdong Li, Long Feng, Yuan Zhao","doi":"10.1088/1742-6596/2632/1/012019","DOIUrl":"https://doi.org/10.1088/1742-6596/2632/1/012019","url":null,"abstract":"Abstract In recent years, with the development of sensors, communication networks, and deep learning, drones have been widely used in the field of object detection, tracking, and positioning. However, there are inefficient task execution and some complex algorithms still need to rely on large servers, which is intolerable in rescue and traffic scheduling tasks. Designing fast algorithms that can run on the airborne computer can effectively solve the problem. In this paper, an object detection and location system for drones is proposed. We combine the improved object detection algorithm ST-YOLO based on YOLOX and Swin Transformer with the visual positioning algorithm and deploy it on the airborne end by using TensorRT to realize the detection and location of objects during the flight of the drone. Field experiments show that the established system and algorithm are effective.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"93 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135716777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OPSNet: Point Cloud Registration Based on Overlapping Predictive Segmentation OPSNet:基于重叠预测分割的点云配准
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2632/1/012005
Jiuxin Hu, Zhihao Pan, Zhiyong Li, Jin Tang
{"title":"OPSNet: Point Cloud Registration Based on Overlapping Predictive Segmentation","authors":"Jiuxin Hu, Zhihao Pan, Zhiyong Li, Jin Tang","doi":"10.1088/1742-6596/2632/1/012005","DOIUrl":"https://doi.org/10.1088/1742-6596/2632/1/012005","url":null,"abstract":"Abstract Registration is a critical task in the field of point clouds, aiming to align data acquired at different times or from different viewpoints for accurate matching. Deep learning methods have made important progress in point cloud registration tasks. However, most existing approaches do not handle the non-overlapping parts of point clouds, resulting in poor performance in low-overlap and noisy scenarios. We propose a registration model called OPSNet, which achieves optimal alignment transformation estimation and overlapping region prediction through an iterative process. OPSNet consists of modules including global feature extraction, overlapping region prediction segmentation, and alignment registration. By utilizing a segmentation algorithm to deal with the non-overlapping parts of data, OPSNet reduces the adverse effects caused by non-overlapping regions in point cloud registration. The model learns feature representations and performs iterative optimization to achieve precise point cloud alignment. We conduct comprehensive experiments on common point cloud registration datasets and compare OPSNet with several classical point cloud registration methods. The experimental results display that OPSNet achieves outstanding performance in terms of rotation and translation errors, outperforming other methods. Additionally, we evaluate the registration performance under different overlap ratios and find that OPSNet can achieve better registration results even in low-overlap scenarios.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"93 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135716778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaction Controllable preparation and electrocatalytic performance of two-dimensional sulfides 二维硫化物的反应可控制备及其电催化性能
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2645/1/012017
None XinWang, Qi Chao Yang, Hai tao Wang, Yu Zheng, Geng hang Zhong, Jiang wei Zhao
{"title":"Reaction Controllable preparation and electrocatalytic performance of two-dimensional sulfides","authors":"None XinWang, Qi Chao Yang, Hai tao Wang, Yu Zheng, Geng hang Zhong, Jiang wei Zhao","doi":"10.1088/1742-6596/2645/1/012017","DOIUrl":"https://doi.org/10.1088/1742-6596/2645/1/012017","url":null,"abstract":"Abstract Two-dimensional sulfide has been widely recognized as a promising new type of catalyst to replace precious metals due to its adjustable electronic structure, low cost, and high stability. In this paper, monolayer molybdenum disulfide (MoS 2 ) and layer-controlled tungsten disulfide (WS 2 ) were successfully prepared by chemical vapor deposition (CVD). The two prepared materials’ morphology, structure, and thickness were investigated. The catalytic performance of two-dimensional sulfides was studied under an acidic environment. The results exhibit good catalytic performance toward hydrogen evolution with 63.6 mV/dec low Tafel slope of MoS 2 and 72.8 mV/dec of WS 2 .","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135716779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Operation Optimization of Biomass Integrated Energy System Based on Adjustable Heat-to-Electric Ratio 基于可调热电比的生物质综合能源系统运行优化
Journal of Physics-Photonics Pub Date : 2023-11-01 DOI: 10.1088/1742-6596/2636/1/012050
Changcheng Song, Zhaojun Lu, Wen Zhang, Ao Guo
{"title":"Operation Optimization of Biomass Integrated Energy System Based on Adjustable Heat-to-Electric Ratio","authors":"Changcheng Song, Zhaojun Lu, Wen Zhang, Ao Guo","doi":"10.1088/1742-6596/2636/1/012050","DOIUrl":"https://doi.org/10.1088/1742-6596/2636/1/012050","url":null,"abstract":"Abstract Considering the application of biomass energy, the Biomass Integrated Energy System (BIES) was first constructed. An integrated energy system operation optimization model was proposed with the objective functions of minimizing economic costs and maximizing clean energy utilization. Secondly, according to the characteristics of biomass Cogeneration, the scheme of adjusting the ratio of heat and power is proposed. Finally, a simulation analysis was conducted on a certain region in China. The results indicate that utilizing biomass energy in an integrated energy system can greatly reduce operating costs and improve energy utilization efficiency. After the heat-to-power ratio is adjusted, economic costs can be reduced again by 7.66%, and clean energy utilization can be increased by 6.15%.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"21 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信